A dimension formula for Hermitian modular cusp forms of degree two
HTML articles powered by AMS MathViewer
- by Min King Eie
- Trans. Amer. Math. Soc. 300 (1987), 61-72
- DOI: https://doi.org/10.1090/S0002-9947-1987-0871665-3
- PDF | Request permission
Abstract:
An explicit dimension formula for the vector space of Hermitian modular cusp forms of degree two with respect to the modular group ${\Gamma _2}({\mathbf {Z}}[i]) = \operatorname {SU} (2,2) \cap {M_4}({\mathbf {Z}}[i])$ is obtained via the Selberg trace formula and its arithmetic properties. Also, a generating function for the graded ring of Hermitian cusp forms of degree two is given.References
- Hel Braun, Hermitian modular functions, Ann. of Math. (2) 50 (1949), 827–855. MR 32699, DOI 10.2307/1969581
- Hel Braun, Hermitian modular functions. III, Ann. of Math. (2) 53 (1951), 143–160. MR 39005, DOI 10.2307/1969345
- Ulrich Christian, A reduction theory for symplectic matrices, Math. Z. 101 (1967), 213–244. MR 217096, DOI 10.1007/BF01135840
- Ulrich Christian, Zur Theorie der symplektischen Gruppen, Acta Arith. 24 (1973), 61–85 (German). MR 330056, DOI 10.4064/aa-24-1-61-85
- Min King Eie, Dimensions of spaces of Siegel cusp forms of degree two and three, Mem. Amer. Math. Soc. 50 (1984), no. 304, vi+184. MR 749684, DOI 10.1090/memo/0304
- Min King Eie, Contributions from conjugacy classes of regular elliptic elements in $\textrm {Sp}(n,\,\textbf {Z})$ to the dimension formula, Trans. Amer. Math. Soc. 285 (1984), no. 1, 403–410. MR 748846, DOI 10.1090/S0002-9947-1984-0748846-X —, Contributions from conjugacy classes of regular elliptic elements in hermitian modular groups to the dimension formula of hermitian modular cusp forms, manuscript (1985).
- Min King Eie and Chung Yuan Lin, Fixed points and conjugacy classes of regular elliptic elements in $\textrm {Sp}(3,\textbf {Z})$, Trans. Amer. Math. Soc. 289 (1985), no. 2, 485–496. MR 784000, DOI 10.1090/S0002-9947-1985-0784000-4
- Eberhard Freitag, Modulformen zweiten Grades zum rationalen und Gaußschen Zahlkörper, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl. 1967 (1967), 3–49 (German). MR 0214541 R. Godement, Fonctions automorphes, Séminaire, 1957/1958.
- Ki-ichiro Hashimoto, The dimension of the spaces of cusp forms on Siegel upper half-plane of degree two. I, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1983), no. 2, 403–488. MR 722504
- Ki-ichiro Hashimoto and Tomoyoshi Ibukiyama, On class numbers of positive definite binary quaternion Hermitian forms. II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 695–699 (1982). MR 656045
- R. P. Langlands, The dimension of spaces of automorphic forms, Amer. J. Math. 85 (1963), 99–125. MR 156362, DOI 10.2307/2373189
- D. Mumford, Hirzebruch’s proportionality theorem in the noncompact case, Invent. Math. 42 (1977), 239–272. MR 471627, DOI 10.1007/BF01389790
- Yasuo Morita, An explicit formula for the dimension of spaces of Siegel modular forms of degree two, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 21 (1974), 167–248. MR 347737
- Takuro Shintani, On zeta-functions associated with the vector space of quadratic forms, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975), 25–65. MR 0384717
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 300 (1987), 61-72
- MSC: Primary 11F55; Secondary 11F72
- DOI: https://doi.org/10.1090/S0002-9947-1987-0871665-3
- MathSciNet review: 871665