Complex geometry and the asymptotics of Harish-Chandra modules for real reductive Lie groups. I
HTML articles powered by AMS MathViewer
- by Luis G. Casian and David H. Collingwood
- Trans. Amer. Math. Soc. 300 (1987), 73-107
- DOI: https://doi.org/10.1090/S0002-9947-1987-0871666-5
- PDF | Request permission
Abstract:
Let $G$ be a connected semisimple real matrix group. It is now apparent that the representation theory of $G$ is intimately connected with the complex geometry of the flag variety $\mathcal {B}$. By studying appropriate orbit structures on $\mathcal {B}$, we are naturally led to representation theory in the category of Harish-Chandra modules $\mathcal {H}\mathcal {C}$, or the representation theory of category $\mathcal {O}’$. The Jacquet functor $J:\mathcal {H}\mathcal {C} \to \mathcal {O}’$ has proved a useful tool in converting "$\mathcal {H}\mathcal {C}$ problems" into "$\mathcal {O}’$ problems," which are often more tractable. In this paper, we advance the philosophy that the complex geometry of $\mathcal {B}$, associated to $\mathcal {H}\mathcal {C}$ and $\mathcal {O}’$, interacts in a natural way with the functor $J$, leading to deep new information on the structure of Jacquet modules. This, in turn, gives new insight into the structure of certain nilpotent cohomology groups associated to Harish-Chandra modules. Our techniques are based upon many of the ideas present in the proof of the Kazhdan-Lusztig conjectures and Bernstein’s proof of the Jantzen conjecture.References
- Alexandre Beĭlinson and Joseph Bernstein, Localisation de $g$-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15–18 (French, with English summary). MR 610137
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- Brian D. Boe and David H. Collingwood, A comparison theory for the structure of induced representations, J. Algebra 94 (1985), no. 2, 511–545. MR 792968, DOI 10.1016/0021-8693(85)90197-8 J. Brylinski, Homologie d’intersection et faisceaux pervers, Séminaire Bourbaki, 34e année, no. 585, 1981-82.
- W. Casselman, Jacquet modules for real reductive groups, Proceedings of the International Congress of Mathematicians (Helsinki, 1978) Acad. Sci. Fennica, Helsinki, 1980, pp. 557–563. MR 562655
- David H. Collingwood, Harish-Chandra modules with the unique embedding property, Trans. Amer. Math. Soc. 281 (1984), no. 1, 1–48. MR 719657, DOI 10.1090/S0002-9947-1984-0719657-6
- David H. Collingwood, Embeddings of Harish-Chandra modules, ${\mathfrak {n}}$-homology and the composition series problem: the case of real rank one, Trans. Amer. Math. Soc. 285 (1984), no. 2, 565–579. MR 752491, DOI 10.1090/S0002-9947-1984-0752491-X
- David H. Collingwood, The ${\mathfrak {n}}$-homology of Harish-Chandra modules: generalizing a theorem of Kostant, Math. Ann. 272 (1985), no. 2, 161–187. MR 796245, DOI 10.1007/BF01450563 —, Representations of real rank one Lie groups, Pitman Research Notes in Math., No. 137, Pitman, London, 1985.
- Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520
- O. Gabber and A. Joseph, On the Bernšteĭn-Gel′fand-Gel′fand resolution and the Duflo sum formula, Compositio Math. 43 (1981), no. 1, 107–131. MR 631430
- Mark Goresky and Robert MacPherson, Intersection homology. II, Invent. Math. 72 (1983), no. 1, 77–129. MR 696691, DOI 10.1007/BF01389130 A. Grothendieck et al., (SGA 4) Théorie des topos et cohomologie étale des schémas, Lecture Notes in Math., vols. 269, 270, 305, Springer-Verlag, Berlin and New York, 1972-1973, pp. 270-305.
- P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, vol. 569, Springer-Verlag, Berlin, 1977 (French). Séminaire de géométrie algébrique du Bois-Marie SGA $4\frac {1}{2}$. MR 463174, DOI 10.1007/BFb0091526 —, (SGA 7) Groupes de monodromie en géométrie algébrique, Lecture Notes in Math., vol. 288, Springer-Verlag, Berlin and New York, 1972; Part II in vol. 340, 1973.
- Henryk Hecht, On characters and asymptotics of representations of a real reductive Lie group, Math. Ann. 242 (1979), no. 2, 103–126. MR 537955, DOI 10.1007/BF01420410 H. Hecht and Schmid, Characters, asymptotics, and $\mathfrak {n}$-homology of Harish-Chandra modules, Acta Math. 151 (1983), 49-151.
- Henryk Hecht and Wilfried Schmid, On the asymptotics of Harish-Chandra modules, J. Reine Angew. Math. 343 (1983), 169–183. MR 705884, DOI 10.1515/crll.1983.343.169
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- Ronald S. Irving, Projective modules in the category ${\scr O}_S$: self-duality, Trans. Amer. Math. Soc. 291 (1985), no. 2, 701–732. MR 800259, DOI 10.1090/S0002-9947-1985-0800259-9 —, Projective modules in the category ${\mathcal {O}_s}$: Loewy series, Trans. Amer. Math. Soc. 291 (1986), 733-754.
- Masaki Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci. 20 (1984), no. 2, 319–365. MR 743382, DOI 10.2977/prims/1195181610
- David Kazhdan and George Lusztig, Schubert varieties and Poincaré duality, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 185–203. MR 573434
- George Lusztig and David A. Vogan Jr., Singularities of closures of $K$-orbits on flag manifolds, Invent. Math. 71 (1983), no. 2, 365–379. MR 689649, DOI 10.1007/BF01389103
- Zoghman Mebkhout, Sur le problème de Hilbert-Riemann, Complex analysis, microlocal calculus and relativistic quantum theory (Proc. Internat. Colloq., Centre Phys., Les Houches, 1979) Lecture Notes in Phys., vol. 126, Springer, Berlin-New York, 1980, pp. 90–110 (French). MR 579742 D. Miličić, Notes on localisation of modules over enveloping algebras, handwritten manuscript, 1983. J. Milne, Étale cohomology, Princeton Univ. Press, Princeton, N.J , 1980.
- Wilfried Schmid, Vanishing theorems for Lie algebra cohomology and the cohomology of discrete subgroups of semisimple Lie groups, Adv. in Math. 41 (1981), no. 1, 78–113. MR 625335, DOI 10.1016/S0001-8708(81)80005-9
- M. Welleda Baldoni Silva, The embeddings of the discrete series in the principal series for semisimple Lie groups of real rank one, Trans. Amer. Math. Soc. 261 (1980), no. 2, 303–368. MR 580893, DOI 10.1090/S0002-9947-1980-0580893-X
- David A. Vogan Jr., Irreducible characters of semisimple Lie groups. I, Duke Math. J. 46 (1979), no. 1, 61–108. MR 523602
- David A. Vogan Jr., Irreducible characters of semisimple Lie groups. II. The Kazhdan-Lusztig conjectures, Duke Math. J. 46 (1979), no. 4, 805–859. MR 552528
- David A. Vogan, Irreducible characters of semisimple Lie groups. III. Proof of Kazhdan-Lusztig conjecture in the integral case, Invent. Math. 71 (1983), no. 2, 381–417. MR 689650, DOI 10.1007/BF01389104
- David A. Vogan Jr., Irreducible characters of semisimple Lie groups. IV. Character-multiplicity duality, Duke Math. J. 49 (1982), no. 4, 943–1073. MR 683010
- David A. Vogan Jr., The Kazhdan-Lusztig conjecture for real reductive groups, Representation theory of reductive groups (Park City, Utah, 1982) Progr. Math., vol. 40, Birkhäuser Boston, Boston, MA, 1983, pp. 223–264. MR 733817
- David A. Vogan Jr., Gel′fand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 (1978), no. 1, 75–98. MR 506503, DOI 10.1007/BF01390063 —, Representations of real reductive Lie groups, Progress in Math., Birkhäuser, Boston, 1981. N. Wallach, Representations of semisimple Lie groups and Lie algebras, Queen’s Papers in Pure and Appl. Math. 48 (1977), 154-247.
- Luis G. Casian and David H. Collingwood, Complex geometry and the asymptotics of Harish-Chandra modules for real reductive Lie groups. II, Invent. Math. 86 (1986), no. 2, 255–286. MR 856846, DOI 10.1007/BF01389072 —, Complex geometry and the asymptotics of Harish-Chandra modules for real reductive Lie groups. III: Estimates on $n$-homology, preprint, 1985.
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 300 (1987), 73-107
- MSC: Primary 22E46; Secondary 22E47
- DOI: https://doi.org/10.1090/S0002-9947-1987-0871666-5
- MathSciNet review: 871666