The Szegő projection: Sobolev estimates in regular domains
HTML articles powered by AMS MathViewer
- by Harold P. Boas
- Trans. Amer. Math. Soc. 300 (1987), 109-132
- DOI: https://doi.org/10.1090/S0002-9947-1987-0871667-7
- PDF | Request permission
Abstract:
The Szegö projection preserves global smoothness in weakly pseudoconvex domains that are regular in the sense of Diederich, Fornæss, and Catlin. It preserves local smoothness near boundary points of finite type.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957
- Steven R. Bell, Biholomorphic mappings and the $\bar \partial$-problem, Ann. of Math. (2) 114 (1981), no. 1, 103–113. MR 625347, DOI 10.2307/1971379
- Steven R. Bell, A duality theorem for harmonic functions, Michigan Math. J. 29 (1982), no. 1, 123–128. MR 646379
- Steven R. Bell, A representation theorem in strictly pseudoconvex domains, Illinois J. Math. 26 (1982), no. 1, 19–26. MR 638551
- Steven R. Bell, A Sobolev inequality for pluriharmonic functions, Proc. Amer. Math. Soc. 85 (1982), no. 3, 350–352. MR 656100, DOI 10.1090/S0002-9939-1982-0656100-3
- Steven R. Bell and Harold P. Boas, Regularity of the Bergman projection and duality of holomorphic function spaces, Math. Ann. 267 (1984), no. 4, 473–478. MR 742893, DOI 10.1007/BF01455965
- Steven Bell and David Catlin, Boundary regularity of proper holomorphic mappings, Duke Math. J. 49 (1982), no. 2, 385–396. MR 659947
- Harold P. Boas, Regularity of the Szegő projection in weakly pseudoconvex domains, Indiana Univ. Math. J. 34 (1985), no. 1, 217–223. MR 773403, DOI 10.1512/iumj.1985.34.34013
- Harold P. Boas, Sobolev space projections in strictly pseudoconvex domains, Trans. Amer. Math. Soc. 288 (1985), no. 1, 227–240. MR 773058, DOI 10.1090/S0002-9947-1985-0773058-4
- L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegő, Journées: Équations aux Dérivées Partielles de Rennes (1975), Astérisque, No. 34-35, Soc. Math. France, Paris, 1976, pp. 123–164 (French). MR 0590106
- David Catlin, Boundary invariants of pseudoconvex domains, Ann. of Math. (2) 120 (1984), no. 3, 529–586. MR 769163, DOI 10.2307/1971087 —, Global regularity of the $\overline \partial$-Neumann problem, Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, R. I., 1984.
- David Catlin, Necessary conditions for subellipticity of the $\bar \partial$-Neumann problem, Ann. of Math. (2) 117 (1983), no. 1, 147–171. MR 683805, DOI 10.2307/2006974
- John P. D’Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. (2) 115 (1982), no. 3, 615–637. MR 657241, DOI 10.2307/2007015
- Katharine Perkins Diaz, The Szegő kernel as a singular integral kernel on a family of weakly pseudoconvex domains, Trans. Amer. Math. Soc. 304 (1987), no. 1, 141–170. MR 906810, DOI 10.1090/S0002-9947-1987-0906810-4
- Steven Bell and David Catlin, Boundary regularity of proper holomorphic mappings, Duke Math. J. 49 (1982), no. 2, 385–396. MR 659947
- Klas Diederich and John Erik Fornaess, Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), no. 2, 129–141. MR 437806, DOI 10.1007/BF01390105
- Robert E. Greene and Steven G. Krantz, Deformation of complex structures, estimates for the $\bar \partial$ equation, and stability of the Bergman kernel, Adv. in Math. 43 (1982), no. 1, 1–86. MR 644667, DOI 10.1016/0001-8708(82)90028-7
- R. E. Greene and Steven G. Krantz, Stability properties of the Bergman kernel and curvature properties of bounded domains, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) Ann. of Math. Stud., vol. 100, Princeton Univ. Press, Princeton, N.J., 1981, pp. 179–198. MR 627758
- Norberto Kerzman, The Bergman kernel function. Differentiability at the boundary, Math. Ann. 195 (1972), 149–158. MR 294694, DOI 10.1007/BF01419622
- N. Kerzman and E. M. Stein, The Szegő kernel in terms of Cauchy-Fantappiè kernels, Duke Math. J. 45 (1978), no. 2, 197–224. MR 508154, DOI 10.1215/S0012-7094-78-04513-1
- J. J. Kohn, Boundary regularity of $\bar \partial$, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) Ann. of Math. Stud., vol. 100, Princeton Univ. Press, Princeton, N.J., 1981, pp. 243–260. MR 627761 —, A survey of the $\overline \partial$-Neumann problem, Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, R. I., 1984.
- J. J. Kohn and L. Nirenberg, Non-coercive boundary value problems, Comm. Pure Appl. Math. 18 (1965), 443–492. MR 181815, DOI 10.1002/cpa.3160180305
- Gen Komatsu, Boundedness of the Bergman projector and Bell’s duality theorem, Tohoku Math. J. (2) 36 (1984), no. 3, 453–467. MR 756028, DOI 10.2748/tmj/1178228810
- J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth. MR 0350177
- Eberhard Hopf, Über den funktionalen, insbesondere den analytischen Charakter der Lösungen elliptischer Differentialgleichungen zweiter Ordnung, Math. Z. 34 (1932), no. 1, 194–233 (German). MR 1545250, DOI 10.1007/BF01180586
- Alexander Nagel, Elias M. Stein, and Stephen Wainger, Boundary behavior of functions holomorphic in domains of finite type, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), no. 11, 6596–6599. MR 634936, DOI 10.1073/pnas.78.11.6596
- D. H. Phong and E. M. Stein, Estimates for the Bergman and Szegö projections on strongly pseudo-convex domains, Duke Math. J. 44 (1977), no. 3, 695–704. MR 450623, DOI 10.1215/S0012-7094-77-04429-5
- I. Ramadanov, Sur une propriété de la fonction de Bergman, C. R. Acad. Bulgare Sci. 20 (1967), 759–762 (French). MR 226042
- R. Michael Range, A remark on bounded strictly plurisubharmonic exhaustion functions, Proc. Amer. Math. Soc. 81 (1981), no. 2, 220–222. MR 593461, DOI 10.1090/S0002-9939-1981-0593461-7
- Emil J. Straube, Exact regularity of Bergman, Szegő and Sobolev space projections in nonpseudoconvex domains, Math. Z. 192 (1986), no. 1, 117–128. MR 835396, DOI 10.1007/BF01162025
- Emil J. Straube, Harmonic and analytic functions admitting a distribution boundary value, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), no. 4, 559–591. MR 808424
- Emil J. Straube, Orthogonal projections onto subspaces of the harmonic Bergman space, Pacific J. Math. 123 (1986), no. 2, 465–476. MR 840855, DOI 10.2140/pjm.1986.123.465 E. C. Titchmarsh, The theory of functions, 2nd ed., Oxford Univ. Press, London, 1939.
- J. J. Kohn, Estimates for $\bar \partial _b$ on pseudoconvex CR manifolds, Pseudodifferential operators and applications (Notre Dame, Ind., 1984) Proc. Sympos. Pure Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 207–217. MR 812292, DOI 10.1090/pspum/043/812292
- J. J. Kohn, The range of the tangential Cauchy-Riemann operator, Duke Math. J. 53 (1986), no. 2, 525–545. MR 850548, DOI 10.1215/S0012-7094-86-05330-5
- Ewa Ligocka, The Sobolev spaces of harmonic functions, Studia Math. 84 (1986), no. 1, 79–87. MR 871847, DOI 10.4064/sm-84-1-79-87
- David W. Catlin, Global regularity of the $\bar \partial$-Neumann problem, Complex analysis of several variables (Madison, Wis., 1982) Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, RI, 1984, pp. 39–49. MR 740870, DOI 10.1090/pspum/041/740870
- J. Schauder, Über lineare elliptische Differentialgleichungen zweiter Ordnung, Math. Z. 38 (1934), no. 1, 257–282 (German). MR 1545448, DOI 10.1007/BF01170635
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 300 (1987), 109-132
- MSC: Primary 32F15; Secondary 32A25, 35N15
- DOI: https://doi.org/10.1090/S0002-9947-1987-0871667-7
- MathSciNet review: 871667