Wrappings of permutations
HTML articles powered by AMS MathViewer
- by Saul Stahl
- Trans. Amer. Math. Soc. 300 (1987), 133-152
- DOI: https://doi.org/10.1090/S0002-9947-1987-0871668-9
- PDF | Request permission
Abstract:
A theory of wrappings of permutations is constructed which is analogous to the well-known concept of branched coverings of Riemann surfaces. It is shown that this theory is strong enough to contain combinatorial definitions of such well-known groups as Fuchsian groups of the first kind and triangle groups.References
- J. L. Brenner and R. C. Lyndon, The orbits of the product of two permutations, European J. Combin. 4 (1983), no. 4, 279–293. MR 743150, DOI 10.1016/S0195-6698(83)80024-9
- Robert Cori, Antonio Machì, Jean-Guy Penaud, and Bernard Vauquelin, On the automorphism group of a planar hypermap, European J. Combin. 2 (1981), no. 4, 331–334. MR 638407, DOI 10.1016/S0195-6698(81)80039-X
- Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89, Springer-Verlag, Berlin-New York, 1977. MR 0577064
- Antonio Machì, Homology of hypermaps, J. London Math. Soc. (2) 31 (1985), no. 1, 10–16. MR 810557, DOI 10.1112/jlms/s2-31.1.10
- Wilhelm Magnus, Noneuclidean tesselations and their groups, Pure and Applied Mathematics, Vol. 61, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0352287
- G. A. Miller, On the Product of Two Substitutions, Amer. J. Math. 22 (1900), no. 2, 185–190. MR 1505829, DOI 10.2307/2369754
- M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge University Press, New York, 1961. Second edition, reprinted. MR 0132534 H. Poincaré, Théorie des groupes Fuchsiennes, Acta Math. 1 (1982), 1-62.
- Herbert Seifert and William Threlfall, Seifert and Threlfall: a textbook of topology, Pure and Applied Mathematics, vol. 89, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. Translated from the German edition of 1934 by Michael A. Goldman; With a preface by Joan S. Birman; With “Topology of $3$-dimensional fibered spaces” by Seifert; Translated from the German by Wolfgang Heil. MR 575168
- Saul Stahl, A combinatorial analog of the Jordan curve theorem, J. Combin. Theory Ser. B 35 (1983), no. 1, 28–38. MR 723568, DOI 10.1016/0095-8956(83)90078-3
- Saul Stahl, The average genus of classes of graph embeddings, Proceedings of the fourteenth Southeastern conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1983), 1983, pp. 375–388. MR 734384
- David W. Walkup, How many ways can a permutation be factored into two $n$-cycles?, Discrete Math. 28 (1979), no. 3, 315–319. MR 548630, DOI 10.1016/0012-365X(79)90138-9
- Arthur T. White, Graphs, groups and surfaces, 2nd ed., North-Holland Mathematics Studies, vol. 8, North-Holland Publishing Co., Amsterdam, 1984. MR 780555
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 300 (1987), 133-152
- MSC: Primary 20F05
- DOI: https://doi.org/10.1090/S0002-9947-1987-0871668-9
- MathSciNet review: 871668