A global approach to the Rankin-Selberg convolution for $\textrm {GL}(3,\textbf {Z})$
HTML articles powered by AMS MathViewer
- by Solomon Friedberg
- Trans. Amer. Math. Soc. 300 (1987), 159-174
- DOI: https://doi.org/10.1090/S0002-9947-1987-0871670-7
- PDF | Request permission
Abstract:
We discuss the Rankin-Selberg convolution on $\operatorname {GL} (3,{\mathbf {Z}})$ in the ‘classical’ language of symmetric spaces and automorphic forms.References
- Daniel Bump, Automorphic forms on $\textrm {GL}(3,\textbf {R})$, Lecture Notes in Mathematics, vol. 1083, Springer-Verlag, Berlin, 1984. MR 765698, DOI 10.1007/BFb0100147
- K. Chandrasekharan and Raghavan Narasimhan, Functional equations with multiple gamma factors and the average order of arithmetical functions, Ann. of Math. (2) 76 (1962), 93–136. MR 140491, DOI 10.2307/1970267
- Stephen Gelbart and Hervé Jacquet, A relation between automorphic representations of $\textrm {GL}(2)$ and $\textrm {GL}(3)$, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 471–542. MR 533066, DOI 10.24033/asens.1355 G. Gilbert, Analytic multiplicity one theorems for $\operatorname {GL} (N)$, Ph. D. Thesis, Harvard University, May 1984. I. Gradshteyn and I. Ryzhik, Tables of integrals, series, and products (Corrected and enlarged edition), Academic Press, New York, 1980.
- K. Imai and A. Terras, The Fourier expansion of Eisenstein series for $\textrm {GL}(3,\,\textbf {Z})$, Trans. Amer. Math. Soc. 273 (1982), no. 2, 679–694. MR 667167, DOI 10.1090/S0002-9947-1982-0667167-5
- Hervé Jacquet, Dirichlet series for the group $\textrm {GL}(n)$, Automorphic forms, representation theory and arithmetic (Bombay, 1979), Tata Inst. Fund. Res. Studies in Math., vol. 10, Springer-Verlag, Berlin-New York, 1981, pp. 155–163. MR 633661
- H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), no. 2, 367–464. MR 701565, DOI 10.2307/2374264
- Hervé Jacquet, Ilja Iosifovitch Piatetski-Shapiro, and Joseph Shalika, Automorphic forms on $\textrm {GL}(3)$. I, Ann. of Math. (2) 109 (1979), no. 1, 169–212. MR 519356, DOI 10.2307/1971270 —, Facteur $L$ et $\varepsilon$ du groupe linéaire: théorie Archimédienne, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), 13-18.
- Robert P. Langlands, On the functional equations satisfied by Eisenstein series, Lecture Notes in Mathematics, Vol. 544, Springer-Verlag, Berlin-New York, 1976. MR 0579181, DOI 10.1007/BFb0079929
- C. J. Moreno, Explicit formulas in the theory of automorphic forms, Number theory day (Proc. Conf., Rockefeller Univ., New York, 1976) Lecture Notes in Math., Vol. 626, Springer, Berlin, 1977, pp. 73–216. MR 0476650
- Carlos J. Moreno, The strong multiplicity one theorem for $\textrm {GL}_{n}$, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 180–182. MR 741735, DOI 10.1090/S0273-0979-1984-15259-5
- M. Ram Murty, On the estimation of eigenvalues of Hecke operators, Rocky Mountain J. Math. 15 (1985), no. 2, 521–533. Number theory (Winnipeg, Man., 1983). MR 823263, DOI 10.1216/RMJ-1985-15-2-521 R. Rankin, Contributions to the theory of Ramanujan’s function $\tau (n)$ and similar arithmetical functions. II, Proc. Cambridge Philos. Soc. 35 (1939), 357-372.
- Atle Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Naturvid. 43 (1940), 47–50 (German). MR 2626 J.-P. Serre, letter to G. Gilbert, Dec. 1983.
- J. A. Shalika, The multiplicity one theorem for $\textrm {GL}_{n}$, Ann. of Math. (2) 100 (1974), 171–193. MR 348047, DOI 10.2307/1971071
- Don Zagier, The Rankin-Selberg method for automorphic functions which are not of rapid decay, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 415–437 (1982). MR 656029
- Hervé Jacquet, Fonctions de Whittaker associées aux groupes de Chevalley, Bull. Soc. Math. France 95 (1967), 243–309 (French). MR 271275, DOI 10.24033/bsmf.1654
- Hans Maass, Siegel’s modular forms and Dirichlet series, Lecture Notes in Mathematics, Vol. 216, Springer-Verlag, Berlin-New York, 1971. Dedicated to the last great representative of a passing epoch. Carl Ludwig Siegel on the occasion of his seventy-fifth birthday. MR 0344198, DOI 10.1007/BFb0058625
- A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87. MR 88511
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, No. 1, Iwanami Shoten Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. MR 0314766
- Takuro Shintani, On an explicit formula for class-$1$ “Whittaker functions” on $GL_{n}$ over $P$-adic fields, Proc. Japan Acad. 52 (1976), no. 4, 180–182. MR 407208
- Tsuneo Tamagawa, On the $\zeta$-functions of a division algebra, Ann. of Math. (2) 77 (1963), 387–405. MR 144928, DOI 10.2307/1970221
- Audrey Terras, On automorphic forms for the general linear group, Rocky Mountain J. Math. 12 (1982), no. 1, 123–143. MR 649746, DOI 10.1216/RMJ-1982-12-1-123
- Audrey Terras, A generalization of Epstein’s zeta function, Nagoya Math. J. 42 (1971), 173–188. MR 286761, DOI 10.1017/S0027763000014318
- Audrey A. Terras, Bessel series expansions of the Epstein zeta function and the functional equation, Trans. Amer. Math. Soc. 183 (1973), 477–486. MR 323735, DOI 10.1090/S0002-9947-1973-0323735-6
- Audrey Terras, The Chowla-Selberg method for Fourier expansion of higher rank Eisenstein series, Canad. Math. Bull. 28 (1985), no. 3, 280–294. MR 790949, DOI 10.4153/CMB-1985-034-1
- C. J. Moreno and F. Shahidi, The $L$-functions $L(s,\textrm {Sym}^m(r),\pi )$, Canad. Math. Bull. 28 (1985), no. 4, 405–410. MR 812115, DOI 10.4153/CMB-1985-049-4
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 300 (1987), 159-174
- MSC: Primary 11F70; Secondary 22E50
- DOI: https://doi.org/10.1090/S0002-9947-1987-0871670-7
- MathSciNet review: 871670