Oscillatory phenomena associated to semilinear wave equations in one spatial dimension
HTML articles powered by AMS MathViewer
- by T. Cazenave and A. Haraux
- Trans. Amer. Math. Soc. 300 (1987), 207-233
- DOI: https://doi.org/10.1090/S0002-9947-1987-0871673-2
- PDF | Request permission
Abstract:
Let $g$ be a nonincreasing, odd ${C^1}$ function and $l > 0$. We establish that for any solution $u \in C({\mathbf {R}};H_0^1(0,l))$ of the equation ${u_{tt}} - {u_{xx}} + g(u) = 0$ and any ${x_0} \in ]0,l[$, the function $t \mapsto u(t,{x_0})$ satisfies the following alternative: either $u(t,{x_0}) = 0,\forall t \in {\mathbf {R}}$, or $\forall a \in {\mathbf {R}}$, there exist ${t_1}$ and ${t_2}$ in $[a,a + 2l]$ such that $u({t_1},{x_0}) > 0$ and $u({t_2},{x_0}) < 0$. We study the structure of the set of points satisfying the first possibility. We give analogous results for ${u_x}$ and for some other homogeneous boundary conditions.References
- Haïm Brézis, Jean-Michel Coron, and Louis Nirenberg, Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math. 33 (1980), no. 5, 667–684. MR 586417, DOI 10.1002/cpa.3160330507
- Thierry Cazenave and Alain Haraux, Propriétés oscillatoires des solutions de certaines équations des ondes semi-linéaires, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), no. 18, 449–452 (French, with English summary). MR 750743 —, Some oscillatory properties of the wave equation in several dimensions, J. Funct. Anal. (submitted).
- R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. MR 0065391
- Alain Haraux, Nonlinear evolution equations—global behavior of solutions, Lecture Notes in Mathematics, vol. 841, Springer-Verlag, Berlin-New York, 1981. MR 610796 J. L. Lions, Séminaire Goulaouic-Schwartz, Feb. 1984.
- Paul H. Rabinowitz, Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math. 31 (1978), no. 1, 31–68. MR 470378, DOI 10.1002/cpa.3160310103
- Irving Segal, Non-linear semi-groups, Ann. of Math. (2) 78 (1963), 339–364. MR 152908, DOI 10.2307/1970347
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 300 (1987), 207-233
- MSC: Primary 35L70; Secondary 35B05, 35B15, 35L20
- DOI: https://doi.org/10.1090/S0002-9947-1987-0871673-2
- MathSciNet review: 871673