Forbidden intersections
HTML articles powered by AMS MathViewer
- by Peter Frankl and Vojtěch Rödl
- Trans. Amer. Math. Soc. 300 (1987), 259-286
- DOI: https://doi.org/10.1090/S0002-9947-1987-0871675-6
- PDF | Request permission
Abstract:
About ten years ago P. Erdös conjectured that if $\mathcal {F}$ is a family of subsets of $\{ 1,2, \ldots ,n\}$ without $F$, $F’ \in \mathcal {F}$, $|F \cap F’| = [n/4]$, then $|\mathcal {F}| < {(2 - \varepsilon )^n}$ holds for some positive absolute constant $\varepsilon$. Here this conjecture is proved in a stronger form (Theorem 1.1), which solves a $\mathdollar 250$ problem of Erdös. Suppose $\mathcal {C}$ is a code (i.e., a collection of sequences of length $n$) over an alphabet of $q$ elements, where $\tfrac {1} {2} > \delta > 0$ is arbitrary. Suppose further that there are no two codewords at Hamming distance $d$ where $d$ is a fixed integer, $\delta n < d < (1 - \delta )n$, and $d$ is even if $q = 2$. Then $|\mathcal {C}| < {(q - \varepsilon )^n}$, where $\varepsilon > 0$ depends only on $q$ and $\delta$. The following conjecture of Erdös and Szemerédi is also proved: If $\mathcal {F}$ is a family of subsets of $\{ 1,2, \ldots ,n\}$ not containing a weak $\Delta$-system of size $r$ (cf. Definition 1.8), then $|\mathcal {F}| < {(2 - {\varepsilon _r})^n}$, ${\varepsilon _r} > 0$ holds. An old conjecture of Larman and Rogers is established in the following stronger form: Let $\mathcal {A}$ be a collection of $4n$-dimensional $( \pm 1)$-vectors, $r \geqslant 2$ is a fixed integer. Suppose that $A$ does not contain $r$ pairwise orthogonal vectors. Then $|\mathcal {A}| < {(2 - \varepsilon )^{4n}}$. All these results can be deduced from our most general result (Theorem 1.16) which concerns the intersection pattern of families of partitions. This result has further implications in Euclidean Ramsey theory as well as for isometric embeddings into the Hamming space $H(n,q)$ (cf. Theorem 9.1).References
- N. Alon (personal communication).
- Rudolf Ahlswede, Abbas El Gamal, and King F. Pang, A two-family extremal problem in Hamming space, Discrete Math. 49 (1984), no. 1, 1–5. MR 737611, DOI 10.1016/0012-365X(84)90144-4
- R. Ahlswede and G. O. H. Katona, Contributions to the geometry of Hamming spaces, Discrete Math. 17 (1977), no. 1, 1–22. MR 465883, DOI 10.1016/0012-365X(77)90017-6
- A. Blokhuis, Few-distance sets, CWI Tract, vol. 7, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1984. MR 751955
- Herman Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, Ann. Math. Statistics 23 (1952), 493–507. MR 57518, DOI 10.1214/aoms/1177729330
- Philippe Delsarte, Four fundamental parameters of a code and their combinatorial significance, Information and Control 23 (1973), 407–438. MR 335135
- Ph. Delsarte and Ph. Piret, An extension of an inequality by Ahlswede, El Gamal and Pang for pairs of binary codes, Discrete Math. 55 (1985), no. 3, 313–315. MR 802670, DOI 10.1016/S0012-365X(85)80008-X
- M. Deza and P. Frankl, Erdős-Ko-Rado theorem—$22$ years later, SIAM J. Algebraic Discrete Methods 4 (1983), no. 4, 419–431. MR 721612, DOI 10.1137/0604042
- H. Enomoto, P. Frankl, N. Ito, and K. Nomura, Codes with given distances, Graphs Combin. 3 (1987), no. 1, 25–38. MR 932110, DOI 10.1007/BF01788526
- P. Erdős, Chao Ko, and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961), 313–320. MR 140419, DOI 10.1093/qmath/12.1.313
- P. Erdős, Problems and results in graph theory and combinatorial analysis, Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975) Congressus Numerantium, No. XV, Utilitas Math., Winnipeg, Man., 1976, pp. 169–192. MR 0409246
- P. Erdős, On the combinatorial problems which I would most like to see solved, Combinatorica 1 (1981), no. 1, 25–42. MR 602413, DOI 10.1007/BF02579174
- P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, Euclidean Ramsey theorems. I, J. Combinatorial Theory Ser. A 14 (1973), 341–363. MR 316277, DOI 10.1016/0097-3165(73)90011-3
- P. Erdős and E. Szemerédi, Combinatorial properties of systems of sets, J. Combinatorial Theory Ser. A 24 (1978), no. 3, 308–313. MR 491202, DOI 10.1016/0097-3165(78)90060-2
- P. Frankl, The Erdős-Ko-Rado theorem is true for $n=ckt$, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976) Colloq. Math. Soc. János Bolyai, vol. 18, North-Holland, Amsterdam-New York, 1978, pp. 365–375. MR 519277 —, Bounding the size of a family knowing the differences, Acta Math. Acad. Sci. Hungar. 19 (1984). —, Orthogonal vectors and codes with missing distances, Combinatorica 6 (1986).
- P. Frankl, Generalizations of theorems of Katona and Milner, Acta Math. Acad. Sci. Hungar. 27 (1976), no. 3-4, 359–363. MR 414370, DOI 10.1007/BF01902114
- P. Frankl and Z. Füredi, On hypergraphs without two edges intersecting in a given number of vertices, J. Combin. Theory Ser. A 36 (1984), no. 2, 230–236. MR 734980, DOI 10.1016/0097-3165(84)90008-6
- Peter Frankl and Zoltán Füredi, Forbidding just one intersection, J. Combin. Theory Ser. A 39 (1985), no. 2, 160–176. MR 793269, DOI 10.1016/0097-3165(85)90035-4
- Peter Frankl and Vojtěch Rödl, All triangles are Ramsey, Trans. Amer. Math. Soc. 297 (1986), no. 2, 777–779. MR 854099, DOI 10.1090/S0002-9947-1986-0854099-6
- P. Frankl and R. M. Wilson, Intersection theorems with geometric consequences, Combinatorica 1 (1981), no. 4, 357–368. MR 647986, DOI 10.1007/BF02579457
- L. H. Harper, Optimal numberings and isoperimetric problems on graphs, J. Combinatorial Theory 1 (1966), 385–393. MR 200192
- Noboru Ito, Hadamard graphs. I, Graphs Combin. 1 (1985), no. 1, 57–64. MR 796183, DOI 10.1007/BF02582929
- Gy. Katona, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hungar. 15 (1964), 329–337. MR 168468, DOI 10.1007/BF01897141
- D. G. Larman and C. A. Rogers, The realization of distances within sets in Euclidean space, Mathematika 19 (1972), 1–24. MR 319055, DOI 10.1112/S0025579300004903
- A. M. Odlyzko, On the ranks of some $(0,\,1)$-matrices with constant row sums, J. Austral. Math. Soc. Ser. A 31 (1981), no. 2, 193–201. MR 629173 C. L. M. van Pul, Constant distance code pairs, Nederl. Akad. Wetensch. Proc. (to appear).
- H. J. Ryser, An extension of a theorem of de Bruijn and Erdős on combinatorial designs, J. Algebra 10 (1968), 246–261. MR 229529, DOI 10.1016/0021-8693(68)90099-9
- Vojtěch Rödl, On a packing and covering problem, European J. Combin. 6 (1985), no. 1, 69–78. MR 793489, DOI 10.1016/S0195-6698(85)80023-8
- Richard M. Wilson, The exact bound in the Erdős-Ko-Rado theorem, Combinatorica 4 (1984), no. 2-3, 247–257. MR 771733, DOI 10.1007/BF02579226
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 300 (1987), 259-286
- MSC: Primary 05A05; Secondary 94B25
- DOI: https://doi.org/10.1090/S0002-9947-1987-0871675-6
- MathSciNet review: 871675