Two-dimensional nonlinear boundary value problems for elliptic equations
HTML articles powered by AMS MathViewer
- by Gary M. Lieberman
- Trans. Amer. Math. Soc. 300 (1987), 287-295
- DOI: https://doi.org/10.1090/S0002-9947-1987-0871676-8
- PDF | Request permission
Abstract:
Boundary regularity of solutions of the fully nonlinear boundary value problem \[ F(x,u,Du,{D^2}u) = 0\quad {\text {in}}\;\Omega ,\qquad G(x,u,Du) = 0\quad {\text {on}}\;\partial \Omega \] is discussed for two-dimensional domains $\Omega$. The function $F$ is assumed uniformly elliptic and $G$ is assumed to depend (in a nonvacuous manner) on $Du$. Continuity estimates are proved for first and second derivatives of $u$ under weak hypotheses for smoothness of $F$, $G$, and $\Omega$.References
- George E. Backus, Application of a non-linear boundary-value problem for Laplace’s equation to gravity and geomagnetic intensity surveys, Quart. J. Mech. Appl. Math. 21 (1968), 195–221. MR 227444, DOI 10.1093/qjmam/21.2.195
- David Gilbarg and Lars Hörmander, Intermediate Schauder estimates, Arch. Rational Mech. Anal. 74 (1980), no. 4, 297–318. MR 588031, DOI 10.1007/BF00249677
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Enrico Giusti, Boundary behavior of non-parametric minimal surfaces, Indiana Univ. Math. J. 22 (1972/73), 435–444. MR 305253, DOI 10.1512/iumj.1972.22.22039
- Gary M. Lieberman, The quasilinear Dirichlet problem with decreased regularity at the boundary, Comm. Partial Differential Equations 6 (1981), no. 4, 437–497. MR 612553, DOI 10.1080/03605308108820184
- Gary M. Lieberman, The Dirichlet problem for quasilinear elliptic equations with Hölder continuous boundary values, Arch. Rational Mech. Anal. 79 (1982), no. 4, 305–323. MR 656797, DOI 10.1007/BF00250796
- Gary M. Lieberman, Regularized distance and its applications, Pacific J. Math. 117 (1985), no. 2, 329–352. MR 779924
- Gary M. Lieberman, The Dirichlet problem for quasilinear elliptic equations with continuously differentiable boundary data, Comm. Partial Differential Equations 11 (1986), no. 2, 167–229. MR 818099, DOI 10.1080/03605308608820422
- Gary M. Lieberman and Neil S. Trudinger, Nonlinear oblique boundary value problems for nonlinear elliptic equations, Trans. Amer. Math. Soc. 295 (1986), no. 2, 509–546. MR 833695, DOI 10.1090/S0002-9947-1986-0833695-6
- J. D. Madjarova, On the Neumann problem for a fully nonlinear convex elliptic equation, C. R. Acad. Bulgare Sci. 38 (1985), no. 2, 183–186. MR 789129 M. V. Safonov, On the classical solution of Bellman’s elliptic equation, Soviet Math. Dokl. 30 (1984), 482-485.
- Jean E. Taylor, Boundary regularity for solutions to various capillarity and free boundary problems, Comm. Partial Differential Equations 2 (1977), no. 4, 323–357. MR 487721, DOI 10.1080/03605307708820033
- Neil S. Trudinger, On an interpolation inequality and its applications to nonlinear elliptic equations, Proc. Amer. Math. Soc. 95 (1985), no. 1, 73–78. MR 796449, DOI 10.1090/S0002-9939-1985-0796449-X
- Guo Chun Wen, Some nonlinear boundary value problems for nonlinear elliptic equations of second order in the plane, Complex Variables Theory Appl. 4 (1985), no. 3, 189–204. MR 801637, DOI 10.1080/17476938508814105
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 300 (1987), 287-295
- MSC: Primary 35J65; Secondary 35B65
- DOI: https://doi.org/10.1090/S0002-9947-1987-0871676-8
- MathSciNet review: 871676