On weakly countably determined Banach spaces
HTML articles powered by AMS MathViewer
- by Sophocles Mercourakis
- Trans. Amer. Math. Soc. 300 (1987), 307-327
- DOI: https://doi.org/10.1090/S0002-9947-1987-0871678-1
- PDF | Request permission
Abstract:
For a topological space $X$, let ${C_1}(X)$ denote the Banach space of all bounded functions $f:X \to {\mathbf {R}}$ such that for every $\varepsilon > 0$ the set $\{ x \in X:|f(x)| \geqslant \varepsilon \}$ is closed and discrete in $X$, endowed with the supremum norm. The main theorem is the following: Let $L$ be a weakly countably determined subset of a Banach space; then there exist a subset $\Sigma ’$ of the Baire space $\Sigma$, a compact space $K$, and a bounded linear one-to-one operator $T:C(L) \to {C_1}(\Sigma ’ \times K)$ that is pointwise to pointwise continuous. In the case where $L$ is weakly analytic, $\Sigma ’$ can be replaced by $\Sigma$. This theorem is connected with the basic result of Amir-Lindenstrauss on WCG Banach spaces and has corresponding consequences such as: the representation of Gulko (resp. Talagrand) compact spaces as pointwise compact subsets of ${C_1}(\Sigma ’ \times K)$ (resp. ${C_1}(\Sigma \times K)$) (a compact space $\Omega$ is called Gulko or Talagrand compact if $C(\Omega )$ is WCD or a weakly $K$-analytic Banach space); the characterization of WCD (resp. weakly $K$-analytic) Banach spaces $E$, using one-to-one operators from ${E^{\ast }}$ into ${C_1}(\Sigma ’ \times K)$ (resp. ${C_1}(\Sigma \times K)$); and the existence of equivalent "good" norms on $E$ and ${E^{\ast }}$ simultaneously.References
- D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. (2) 88 (1968), 35–46. MR 228983, DOI 10.2307/1970554
- S. Argyros, S. Mercourakis, and S. Negrepontis, Analytic properties of Corson-compact spaces, General topology and its relations to modern analysis and algebra, V (Prague, 1981) Sigma Ser. Pure Math., vol. 3, Heldermann, Berlin, 1983, pp. 12–23. MR 698385
- S. Argyros and S. Negrepontis, On weakly ${\cal K}$-countably determined spaces of continuous functions, Proc. Amer. Math. Soc. 87 (1983), no. 4, 731–736. MR 687652, DOI 10.1090/S0002-9939-1983-0687652-6
- Y. Benyamini, M. E. Rudin, and M. Wage, Continuous images of weakly compact subsets of Banach spaces, Pacific J. Math. 70 (1977), no. 2, 309–324. MR 625889
- J. P. R. Christensen, Topology and Borel structure, North-Holland Mathematics Studies, Vol. 10, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1974. Descriptive topology and set theory with applications to functional analysis and measure theory. MR 0348724
- F. K. Dashiell and J. Lindenstrauss, Some examples concerning strictly convex norms on $C(K)$ spaces, Israel J. Math. 16 (1973), 329–342. MR 348466, DOI 10.1007/BF02756712
- Joseph Diestel, Geometry of Banach spaces—selected topics, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin-New York, 1975. MR 0461094
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779
- S. P. Gul′ko, The structure of spaces of continuous functions and their hereditary paracompactness, Uspekhi Mat. Nauk 34 (1979), no. 6(210), 33–40 (Russian). MR 562814
- Gary Gruenhage, A note on Gul′ko compact spaces, Proc. Amer. Math. Soc. 100 (1987), no. 2, 371–376. MR 884482, DOI 10.1090/S0002-9939-1987-0884482-0
- W. B. Johnson and J. Lindenstrauss, Some remarks on weakly compactly generated Banach spaces, Israel J. Math. 17 (1974), 219–230. MR 417760, DOI 10.1007/BF02882239
- D. G. Larman and R. R. Phelps, Gâteaux differentiability of convex functions on Banach spaces, J. London Math. Soc. (2) 20 (1979), no. 1, 115–127. MR 545208, DOI 10.1112/jlms/s2-20.1.115
- Joram Lindenstrauss, Weakly compact sets—their topological properties and the Banach spaces they generate, Symposium on Infinite-Dimensional Topology (Louisiana State Univ., Baton Rouge, La., 1967) Ann. of Math. Studies, No. 69, Princeton Univ. Press, Princeton, N.J., 1972, pp. 235–273. MR 0417761 S. Mercourakis, Corson-compact spaces and the structure of $K$-analytic Banach spaces, Doctoral dissertation, Athens Univ., 1983 (Greek).
- Sophocles Mercourakis, Some characterizations of analytic metric spaces, Pacific J. Math. 128 (1987), no. 1, 149–156. MR 883382
- S. Negrepontis, Banach spaces and topology, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 1045–1142. MR 776642 C. A. Rogers and J. E. Jayne, $K$-analytic sets, Analytic Sets, Academic Press, London, 1980.
- Haskell P. Rosenthal, On injective Banach spaces and the spaces $L^{\infty }(\mu )$ for finite measure $\mu$, Acta Math. 124 (1970), 205–248. MR 257721, DOI 10.1007/BF02394572
- Haskell P. Rosenthal, The heredity problem for weakly compactly generated Banach spaces, Compositio Math. 28 (1974), 83–111. MR 417762
- Haskell P. Rosenthal, Point-wise compact subsets of the first Baire class, Amer. J. Math. 99 (1977), no. 2, 362–378. MR 438113, DOI 10.2307/2373824
- Michel Talagrand, Espaces de Banach faiblement ${\cal K}$-analytiques, Ann. of Math. (2) 110 (1979), no. 3, 407–438 (French). MR 554378, DOI 10.2307/1971232
- Michel Talagrand, Deux généralisations d’un théorème de I. Namioka, Pacific J. Math. 81 (1979), no. 1, 239–251 (French). MR 543747
- Michel Talagrand, A new countably determined Banach space, Israel J. Math. 47 (1984), no. 1, 75–80. MR 736065, DOI 10.1007/BF02760563
- L. Vašák, On one generalization of weakly compactly generated Banach spaces, Studia Math. 70 (1981), no. 1, 11–19. MR 646957, DOI 10.4064/sm-70-1-11-19
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 300 (1987), 307-327
- MSC: Primary 46B20; Secondary 47B38, 54H05
- DOI: https://doi.org/10.1090/S0002-9947-1987-0871678-1
- MathSciNet review: 871678