## Infinite-dimensional linear systems with unbounded control and observation: a functional analytic approach

HTML articles powered by AMS MathViewer

- by Dietmar Salamon PDF
- Trans. Amer. Math. Soc.
**300**(1987), 383-431 Request permission

## Abstract:

The object of this paper is to develop a unifying framework for the functional analytic representation of infinite dimensional linear systems with unbounded input and output operators. On the basis of the general approach new results are derived on the wellposedness of feedback systems and on the linear quadratic control problem. The implications of the theory for large classes of functional and partial differential equations are discussed in detail.## References

- S. Agmon, A. Douglis, and L. Nirenberg,
*Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I*, Comm. Pure Appl. Math.**12**(1959), 623–727. MR**125307**, DOI 10.1002/cpa.3160120405 - A. V. Balakrishnan,
*Boundary control of parabolic equations: $L-Q-R$ theory*, Theory of nonlinear operators (Proc. Fifth Internat. Summer School, Central Inst. Math. Mech. Acad. Sci. GDR, Berlin, 1977) Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Tech., 1978, vol. 6, Akademie-Verlag, Berlin, 1978, pp. 11–23. MR**540444** - C. Bernier and A. Manitius,
*On semigroups in $\textbf {R}^{n}\times L^{p}$ corresponding to differential equations with delays*, Canadian J. Math.**30**(1978), no. 5, 897–914. MR**508727**, DOI 10.4153/CJM-1978-078-6 - John A. Burns, Terry L. Herdman, and Harlan W. Stech,
*Linear functional-differential equations as semigroups on product spaces*, SIAM J. Math. Anal.**14**(1983), no. 1, 98–116. MR**686237**, DOI 10.1137/0514007
G. Chen, M. C. Delfour, A. M. Krall and G. Payre, - Ruth F. Curtain and Anthony J. Pritchard,
*Infinite dimensional linear systems theory*, Lecture Notes in Control and Information Sciences, vol. 8, Springer-Verlag, Berlin-New York, 1978. MR**516812** - R. F. Curtain and D. Salamon,
*Finite-dimensional compensators for infinite-dimensional systems with unbounded input operators*, SIAM J. Control Optim.**24**(1986), no. 4, 797–816. MR**846384**, DOI 10.1137/0324050 - G. Da Prato,
*Some results on linear stochastic evolution equations in Hilbert spaces by the semigroups method*, Stochastic Anal. Appl.**1**(1983), no. 1, 57–88. MR**700357**, DOI 10.1080/07362998308809004 - R. Datko,
*Neutral autonomous functional equations with quadratic cost*, SIAM J. Control**12**(1974), 70–82. MR**0375034** - M. C. Delfour,
*The linear-quadratic optimal control problem with delays in state and control variables: a state space approach*, SIAM J. Control Optim.**24**(1986), no. 5, 835–883. MR**854061**, DOI 10.1137/0324053
M. C. Delfour and J. Karrakchou, - H. O. Fattorini,
*Boundary control systems*, SIAM J. Control**6**(1968), 349–385. MR**0239249** - Franco Flandoli,
*Riccati equation arising in a boundary control problem with distributed parameters*, SIAM J. Control Optim.**22**(1984), no. 1, 76–86. MR**728673**, DOI 10.1137/0322006
—, - Gerald B. Folland,
*Introduction to partial differential equations*, Mathematical Notes, Princeton University Press, Princeton, N.J., 1976. Preliminary informal notes of university courses and seminars in mathematics. MR**0599578** - Avner Friedman,
*Partial differential equations*, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. MR**0445088** - J. S. Gibson,
*The Riccati integral equations for optimal control problems on Hilbert spaces*, SIAM J. Control Optim.**17**(1979), no. 4, 537–565. MR**534423**, DOI 10.1137/0317039 - Keith D. Graham and David L. Russell,
*Boundary value control of the wave equation in a spherical region*, SIAM J. Control**13**(1975), 174–196. MR**0355756** - L. F. Ho and D. L. Russell,
*Admissible input elements for systems in Hilbert space and a Carleson measure criterion*, SIAM J. Control Optim.**21**(1983), no. 4, 614–640. MR**704478**, DOI 10.1137/0321037 - Akira Ichikawa,
*Quadratic control of evolution equations with delays in control*, SIAM J. Control Optim.**20**(1982), no. 5, 645–668. MR**667646**, DOI 10.1137/0320048 - Kazufumi Ito and T. J. Tarn,
*A linear quadratic optimal control for neutral systems*, Nonlinear Anal.**9**(1985), no. 7, 699–727. MR**796083**, DOI 10.1016/0362-546X(85)90013-6
J. Karrakchou, - Irena Lasiecka,
*Unified theory for abstract parabolic boundary problems—a semigroup approach*, Appl. Math. Optim.**6**(1980), no. 4, 287–333. MR**587501**, DOI 10.1007/BF01442900 - I. Lasiecka and R. Triggiani,
*A cosine operator approach to modeling $L_{2}(0,\,T;\ L_{2}(\Gamma ))$—boundary input hyperbolic equations*, Appl. Math. Optim.**7**(1981), no. 1, 35–93. MR**600559**, DOI 10.1007/BF01442108 - I. Lasiecka and R. Triggiani,
*Dirichlet boundary control problem for parabolic equations with quadratic cost: analyticity and Riccati’s feedback synthesis*, SIAM J. Control Optim.**21**(1983), no. 1, 41–67. MR**688439**, DOI 10.1137/0321003
—, - J.-L. Lions,
*Optimal control of systems governed by partial differential equations.*, Die Grundlehren der mathematischen Wissenschaften, Band 170, Springer-Verlag, New York-Berlin, 1971. Translated from the French by S. K. Mitter. MR**0271512**
J. L. Lions and E. Magenes, - D. L. Lukes and D. L. Russell,
*The quadratic criterion for distributed systems*, SIAM J. Control**7**(1969), 101–121. MR**0250163** - R. K. Miller,
*Linear Volterra integrodifferential equations as semigroups*, Funkcial. Ekvac.**17**(1974), 39–55. MR**350511** - A. Pazy,
*Semigroups of linear operators and applications to partial differential equations*, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR**710486**, DOI 10.1007/978-1-4612-5561-1 - R. S. Phillips,
*A note on the abstract Cauchy problem*, Proc. Nat. Acad. Sci. U.S.A.**40**(1954), 244–248. MR**61759**, DOI 10.1073/pnas.40.4.244
A. J. Prichard and D. Salamon, - John P. Quinn and David L. Russell,
*Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping*, Proc. Roy. Soc. Edinburgh Sect. A**77**(1977), no. 1-2, 97–127. MR**473539**, DOI 10.1017/S0308210500018072 - David L. Russell,
*.On boundary-value controllability of linear symmetric hyperbolic systems*, Mathematical Theory of Control (Proc. Conf., Los Angeles, Calif., 1967) Academic Press, New York, 1967, pp. 312–321. MR**0258500** - David L. Russell,
*Quadratic performance criteria in boundary control of linear symmetric hyperbolic systems*, SIAM J. Control**11**(1973), 475–509. MR**0328728** - David L. Russell,
*A unified boundary controllability theory for hyperbolic and parabolic partial differential equations*, Studies in Appl. Math.**52**(1973), 189–211. MR**341256**, DOI 10.1002/sapm1973523189 - David L. Russell,
*Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions*, SIAM Rev.**20**(1978), no. 4, 639–739. MR**508380**, DOI 10.1137/1020095 - Dietmar Salamon,
*Control and observation of neutral systems*, Research Notes in Mathematics, vol. 91, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR**724934** - Dietmar Salamon,
*A duality principle for neutral functional-differential equations*, Equadiff 82 (Würzburg, 1982) Lecture Notes in Math., vol. 1017, Springer, Berlin, 1983, pp. 543–552. MR**726611**, DOI 10.1007/BFb0103278
M. Sorine, - R. B. Vinter and R. H. Kwong,
*The infinite time quadratic control problem for linear systems with state and control delays: an evolution equation approach*, SIAM J. Control Optim.**19**(1981), no. 1, 139–153. MR**603086**, DOI 10.1137/0319011 - Don Washburn,
*A bound on the boundary input map for parabolic equations with application to time optimal control*, SIAM J. Control Optim.**17**(1979), no. 5, 652–671. MR**540844**, DOI 10.1137/0317046

*Modelling, stabilization and control of serially connected beams*, Tech. Rep. Dept. of Math., Pennsylvania State Univ., University Park, Pa., 1984.

*State space theory of linear time invariant systems with delays in state control and observation variables*, Parts I, II, CRMA, Univ. de Montréal, CRMA-1223, 1984.

*Dynamic programming approach to the optimal control of systems governed by nonwellposed Cauchy problems in Hilbert spaces*, Second Internat. Conf. on Control Theory for Distributed Parameter Systems, (F. Kappel, K. Kunisch and W. Schappacher, eds.), July, 1984.

*Analyse et commande systèmes differentiels fonctionels de type héréditaire*, Thèse de doctorat, Univ. de Montréal, CRMA-1205, 1984.

*Regularity of hyperbolic equations under*${L^2}\left [ {0,\,T;{L^2}(\Gamma )} \right ]$—

*Dirichlet boundary terms*, SIAM J. Control Optim.

**24**(1986), 884-925. —,

*An*${L^2}$

*-theory for the quadratic optimal cost problem of hyperbolic equations with control in the Dirichlet boundary conditions*, Control Theory for Distributed Parameter Systems and Applications (F. Kappel, K. Kunisch and W. Schappacher, eds.), LNCIS 54, Springer-Verlag, Berlin, 1983, pp. 138-152.

*Nonhomogeneous boundary value problems and applications*, vols. I, II, Springer-Verlag, New York, 1972.

*The linear quadratic control problem for infinite dimensional systems*, Part I:

*A semigroup theoretic approach for systems with unbounded input and output operators*, SIAM J. Control Optim. (to appear); Part II:

*Retarded systems with delays in control and observation*, IMA J. Math. Control Inf.

**2**(1985), 335-362

*Une resultat d’existence et unicité pour l’équation de Riccati stationaire*, Rapport INRIA no. 55, 1981. —,

*Sur le semigroupe non linéaire associe à l’équation de Riccati*, CRMA, Univ. de Montréal, CRMA-1055, 1981.

## Additional Information

- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**300**(1987), 383-431 - MSC: Primary 93C25; Secondary 34G10, 47A99, 47D05, 49A27
- DOI: https://doi.org/10.1090/S0002-9947-1987-0876460-7
- MathSciNet review: 876460