Sufficiency conditions for $L^ p$-multipliers with power weights
HTML articles powered by AMS MathViewer
- by Benjamin Muckenhoupt, Richard L. Wheeden and Wo-Sang Young
- Trans. Amer. Math. Soc. 300 (1987), 433-461
- DOI: https://doi.org/10.1090/S0002-9947-1987-0876461-9
- PDF | Request permission
Abstract:
Weighted norm inequalities in ${R^1}$ are proved for multiplier operators with the multiplier function of Hörmander type. The operators are initially defined on the space ${\mathcal {S}_{0,0}}$ of Schwartz functions whose Fourier transforms have compact support not including 0. This restriction on the domain of definition makes it possible to use weight functions of the form ${\left | x \right |^\alpha }$ for $\alpha$ larger than usually considered. For these weight functions, if $(\alpha + 1)/p$ is not an integer, a strict inequality on $\alpha$ is shown to be sufficient for a norm inequality to hold. A sequel to this paper shows that the weak version of this inequality is necessary.References
- A.-P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution. II, Advances in Math. 24 (1977), no. 2, 101–171. MR 450888, DOI 10.1016/S0001-8708(77)80016-9
- A.-P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171–225. MR 136849, DOI 10.4064/sm-20-2-181-225
- A. Carbery, G. Gasper, and W. Trebels, On localized potential spaces, J. Approx. Theory 48 (1986), no. 3, 251–261. MR 864749, DOI 10.1016/0021-9045(86)90049-3
- W. C. Connett and A. L. Schwartz, The theory of ultraspherical multipliers, Mem. Amer. Math. Soc. 9 (1977), no. 183, iv+92. MR 435708, DOI 10.1090/memo/0183
- George Gasper and Walter Trebels, A characterization of localized Bessel potential spaces and applications to Jacobi and Hankel multipliers, Studia Math. 65 (1979), no. 3, 243–278. MR 567079, DOI 10.4064/sm-65-3-243-278
- I. I. Hirschman, The decomposition of Walsh and Fourier series, Mem. Amer. Math. Soc. 15 (1955), 65. MR 72269
- Richard Hunt, Benjamin Muckenhoupt, and Richard Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227–251. MR 312139, DOI 10.1090/S0002-9947-1973-0312139-8
- Douglas S. Kurtz, Littlewood-Paley and multiplier theorems on weighted $L^{p}$ spaces, Trans. Amer. Math. Soc. 259 (1980), no. 1, 235–254. MR 561835, DOI 10.1090/S0002-9947-1980-0561835-X
- Benjamin Muckenhoupt, Hardy’s inequality with weights, Studia Math. 44 (1972), 31–38. MR 311856, DOI 10.4064/sm-44-1-31-38 —, Necessity conditions for ${L^p}$ multipliers with power weights, Trans. Amer. Math. Soc. 300 503-520.
- Benjamin Muckenhoupt, Richard L. Wheeden, and Wo-Sang Young, $L^{2}$ multipliers with power weights, Adv. in Math. 49 (1983), no. 2, 170–216. MR 714588, DOI 10.1016/0001-8708(83)90072-5
- Benjamin Muckenhoupt, Richard L. Wheeden, and Wo-Sang Young, Sufficiency conditions for $L^p$-multipliers with power weights, Trans. Amer. Math. Soc. 300 (1987), no. 2, 433–461. MR 876461, DOI 10.1090/S0002-9947-1987-0876461-9
- Benjamin Muckenhoupt and Wo Sang Young, $L^{p}$ multipliers with weight $x^{kp-1}$, Trans. Amer. Math. Soc. 275 (1983), no. 2, 623–639. MR 682722, DOI 10.1090/S0002-9947-1983-0682722-5
- Elias M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482–492. MR 82586, DOI 10.1090/S0002-9947-1956-0082586-0
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 300 (1987), 433-461
- MSC: Primary 42A45; Secondary 42B15
- DOI: https://doi.org/10.1090/S0002-9947-1987-0876461-9
- MathSciNet review: 876461