Sufficiency conditions for $L^ p$ multipliers with general weights
HTML articles powered by AMS MathViewer
- by Benjamin Muckenhoupt, Richard L. Wheeden and Wo-Sang Young
- Trans. Amer. Math. Soc. 300 (1987), 463-502
- DOI: https://doi.org/10.1090/S0002-9947-1987-0876462-0
- PDF | Request permission
Abstract:
Weighted norm inequalities in ${R^1}$ are proved for multiplier operators with the multiplier function satisfying Hörmander type conditions. The operators are initially defined on the space ${\mathcal {S}_{0,0}}$ of Schwartz functions whose Fourier transforms have compact support not including 0. This restriction on the domain of definition makes it possible to use a larger class of weight functions than usually considered; weight functions used here are of the form ${\left | {g(x)} \right |^p}V(x)$ where $g(x)$) is a polynomial of arbitrarily high degree and $V(x)$ is in ${A_p}$. For weight functions in ${A_p}$, the results hold for all Schwartz functions. The periodic case is also considered.References
- Ernst Adams, On weighted norm inequalities for the Hilbert transform of functions with moments zero, Trans. Amer. Math. Soc. 272 (1982), no. 2, 487–500. MR 662048, DOI 10.1090/S0002-9947-1982-0662048-5
- A.-P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution. II, Advances in Math. 24 (1977), no. 2, 101–171. MR 450888, DOI 10.1016/S0001-8708(77)80016-9
- A.-P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171–225. MR 136849, DOI 10.4064/sm-20-2-181-225
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- R. Coifman, Peter W. Jones, and José L. Rubio de Francia, Constructive decomposition of BMO functions and factorization of $A_{p}$ weights, Proc. Amer. Math. Soc. 87 (1983), no. 4, 675–676. MR 687639, DOI 10.1090/S0002-9939-1983-0687639-3
- W. C. Connett and A. L. Schwartz, The theory of ultraspherical multipliers, Mem. Amer. Math. Soc. 9 (1977), no. 183, iv+92. MR 435708, DOI 10.1090/memo/0183
- A. Cordoba and C. Fefferman, A weighted norm inequality for singular integrals, Studia Math. 57 (1976), no. 1, 97–101. MR 420115, DOI 10.4064/sm-57-1-97-101
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- George Gasper and Walter Trebels, A characterization of localized Bessel potential spaces and applications to Jacobi and Hankel multipliers, Studia Math. 65 (1979), no. 3, 243–278. MR 567079, DOI 10.4064/sm-65-3-243-278
- Richard Hunt, Benjamin Muckenhoupt, and Richard Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227–251. MR 312139, DOI 10.1090/S0002-9947-1973-0312139-8
- Douglas S. Kurtz, Littlewood-Paley and multiplier theorems on weighted $L^{p}$ spaces, Trans. Amer. Math. Soc. 259 (1980), no. 1, 235–254. MR 561835, DOI 10.1090/S0002-9947-1980-0561835-X
- Douglas S. Kurtz and Richard L. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc. 255 (1979), 343–362. MR 542885, DOI 10.1090/S0002-9947-1979-0542885-8
- Benjamin Muckenhoupt, Hardy’s inequality with weights, Studia Math. 44 (1972), 31–38. MR 311856, DOI 10.4064/sm-44-1-31-38
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
- Benjamin Muckenhoupt, Transplantation theorems and multiplier theorems for Jacobi series, Mem. Amer. Math. Soc. 64 (1986), no. 356, iv+86. MR 858466, DOI 10.1090/memo/0356
- Benjamin Muckenhoupt, Richard L. Wheeden, and Wo-Sang Young, Sufficiency conditions for $L^p$-multipliers with power weights, Trans. Amer. Math. Soc. 300 (1987), no. 2, 433–461. MR 876461, DOI 10.1090/S0002-9947-1987-0876461-9
- Benjamin Muckenhoupt, Richard L. Wheeden, and Wo-Sang Young, $L^{2}$ multipliers with power weights, Adv. in Math. 49 (1983), no. 2, 170–216. MR 714588, DOI 10.1016/0001-8708(83)90072-5
- Benjamin Muckenhoupt, Richard L. Wheeden, and Wo-Sang Young, Sufficiency conditions for $L^p$-multipliers with power weights, Trans. Amer. Math. Soc. 300 (1987), no. 2, 433–461. MR 876461, DOI 10.1090/S0002-9947-1987-0876461-9
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- E. M. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc. 87 (1958), 159–172. MR 92943, DOI 10.1090/S0002-9947-1958-0092943-6
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972 J.-O. Strömberg and R. Wheeden, Relations between $H_u^p$ and $L_u^p$ with polynomial weights, Trans. Amer. Math. Soc. 270 (1982), 439-467.
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 300 (1987), 463-502
- MSC: Primary 42A45; Secondary 42B15
- DOI: https://doi.org/10.1090/S0002-9947-1987-0876462-0
- MathSciNet review: 876462