Some weighted norm inequalities for the Fourier transform of functions with vanishing moments
HTML articles powered by AMS MathViewer
- by Cora Sadosky and Richard L. Wheeden
- Trans. Amer. Math. Soc. 300 (1987), 521-533
- DOI: https://doi.org/10.1090/S0002-9947-1987-0876464-4
- PDF | Request permission
Abstract:
Weighted $L^p$ norm inequalities are derived between a function and its Fourier transform in case the function has vanishing moments up to some order. For weights of the form ${\left | x \right |^\gamma }$, the results concern values of $\gamma$ which are outside the range which is normally considered.References
- J. Scott Bradley, Hardy inequalities with mixed norms, Canad. Math. Bull. 21 (1978), no. 4, 405–408. MR 523580, DOI 10.4153/CMB-1978-071-7
- Mischa Cotlar and Cora Sadosky, Inégalités à poids pour les coefficients lacunaires de certaines fonctions analytiques, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 13, 591–594 (French, with English summary). MR 771355
- Richard Hunt, Benjamin Muckenhoupt, and Richard Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227–251. MR 312139, DOI 10.1090/S0002-9947-1973-0312139-8
- Benjamin Muckenhoupt and Wo Sang Young, $L^{p}$ multipliers with weight $x^{kp-1}$, Trans. Amer. Math. Soc. 275 (1983), no. 2, 623–639. MR 682722, DOI 10.1090/S0002-9947-1983-0682722-5
- Benjamin Muckenhoupt, Richard L. Wheeden, and Wo-Sang Young, $L^{2}$ multipliers with power weights, Adv. in Math. 49 (1983), no. 2, 170–216. MR 714588, DOI 10.1016/0001-8708(83)90072-5
- Elias M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482–492. MR 82586, DOI 10.1090/S0002-9947-1956-0082586-0
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 300 (1987), 521-533
- MSC: Primary 42B10
- DOI: https://doi.org/10.1090/S0002-9947-1987-0876464-4
- MathSciNet review: 876464