Polynomial algebras have polynomial growth
HTML articles powered by AMS MathViewer
- by David R. Finston
- Trans. Amer. Math. Soc. 300 (1987), 535-556
- DOI: https://doi.org/10.1090/S0002-9947-1987-0876465-6
- PDF | Request permission
Abstract:
The definitions and basic properties of Gelfand-Kirillov dimension are extended to algebras over a field which are not necessarily associative. The results are applied to the algebra of polynomial functions on an arbitrary finite dimensional algebra to obtain polynomial growth (i.e. integral G-K dimension) for these algebras. The G-K dimension of the polynomial algebra in one indeterminate is shown to be constant on the category of all finite dimensional nomial extensions of an associative algebra.References
- Walter Borho and Hanspeter Kraft, Über die Gelfand-Kirillov-Dimension, Math. Ann. 220 (1976), no. 1, 1–24. MR 412240, DOI 10.1007/BF01354525
- Carl Faith, Algebra. II, Grundlehren der Mathematischen Wissenschaften, No. 191, Springer-Verlag, Berlin-New York, 1976. Ring theory. MR 0427349 D. R. Finston, The algebra of polynomial functions on a non-associative algebra, Thesis, U.C.S.D., 1983.
- David R. Finston, Separable polynomials over finite-dimensional algebras, Comm. Algebra 13 (1985), no. 7, 1597–1626. MR 790400, DOI 10.1080/00927878508823241
- David R. Finston, On multiplication algebras, Trans. Amer. Math. Soc. 293 (1986), no. 2, 807–818. MR 816327, DOI 10.1090/S0002-9947-1986-0816327-2
- Nathan Jacobson, The Theory of Rings, American Mathematical Society Mathematical Surveys, Vol. II, American Mathematical Society, New York, 1943. MR 0008601
- A. Joseph and L. W. Small, An additivity principle for Goldie rank, Israel J. Math. 31 (1978), no. 2, 105–114. MR 516246, DOI 10.1007/BF02760541
- G. R. Krause and T. H. Lenagan, Growth of algebras and Gel′fand-Kirillov dimension, Research Notes in Mathematics, vol. 116, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 781129
- Martin Lorenz and Lance W. Small, On the Gel′fand-Kirillov dimension of Noetherian P.I.-algebras, Algebraists’ homage: papers in ring theory and related topics (New Haven, Conn., 1981) Contemp. Math., vol. 13, Amer. Math. Soc., Providence, R.I., 1982, pp. 199–205. MR 685952
- Helmut Röhrl, On the zeros of polynomials over arbitrary finite-dimensional algebras, Manuscripta Math. 25 (1978), no. 4, 359–390. MR 509591, DOI 10.1007/BF01168049 —, The algebra of polynomial functions with coefficients in a nonassociative algebra, Seminar berichte Fernuniversität Hagen 6 (1980) and 8 (1981).
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 300 (1987), 535-556
- MSC: Primary 17A99
- DOI: https://doi.org/10.1090/S0002-9947-1987-0876465-6
- MathSciNet review: 876465