A bilinear form for Spin manifolds
HTML articles powered by AMS MathViewer
- by Peter S. Landweber and Robert E. Stong
- Trans. Amer. Math. Soc. 300 (1987), 625-640
- DOI: https://doi.org/10.1090/S0002-9947-1987-0876469-3
- PDF | Request permission
Abstract:
This paper studies the bilinear form on ${H^j}(M;{Z_2})$ defined by $\left [ {x, y} \right ] = x {\text {S}}{{\text {q}}^2}y[M]$ when $M$ is a closed Spin manifold of dimension $2j + 2$. In analogy with the work of Lusztig, Milnor, and Peterson for oriented manifolds, the rank of this form on integral classes gives rise to a cobordism invariant.References
- D. W. Anderson, E. H. Brown Jr., and F. P. Peterson, The structure of the Spin cobordism ring, Ann. of Math. (2) 86 (1967), 271β298. MR 219077, DOI 10.2307/1970690
- William Browder, Remark on the PoincarΓ© duality theorem, Proc. Amer. Math. Soc. 13 (1962), 927β930. MR 143205, DOI 10.1090/S0002-9939-1962-0143205-6
- William Browder, Torsion in $H$-spaces, Ann. of Math. (2) 74 (1961), 24β51. MR 124891, DOI 10.2307/1970305
- Edgar H. Brown Jr., Generalizations of the Kervaire invariant, Ann. of Math. (2) 95 (1972), 368β383. MR 293642, DOI 10.2307/1970804
- E. E. Floyd, The number of cells in a non-bounding manifold, Ann. of Math. (2) 98 (1973), 210β225. MR 334256, DOI 10.2307/1970782
- Steven M. Kahn, Involutions on odd-dimensional manifolds and the de Rham invariant, Topology 26 (1987), no.Β 3, 287β296. MR 899050, DOI 10.1016/0040-9383(87)90002-4
- G. Lusztig, J. Milnor, and F. P. Peterson, Semi-characteristics and cobordism, Topology 8 (1969), 357β359. MR 246308, DOI 10.1016/0040-9383(69)90021-4
- R. E. Stong, Appendix: calculation of $\Omega ^{\textrm {Spin}}_{11}(K(Z,4))$, Workshop on unified string theories (Santa Barbara, Calif., 1985) World Sci. Publishing, Singapore, 1986, pp.Β 430β437. MR 849112
- W. Stephen Wilson, A new relation on the Stiefel-Whitney classes of spin manifolds, Illinois J. Math. 17 (1973), 115β127. MR 310883
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 300 (1987), 625-640
- MSC: Primary 57R20; Secondary 57R15, 57R90
- DOI: https://doi.org/10.1090/S0002-9947-1987-0876469-3
- MathSciNet review: 876469