A generalized Fatou theorem
HTML articles powered by AMS MathViewer
- by B. A. Mair and David Singman
- Trans. Amer. Math. Soc. 300 (1987), 705-719
- DOI: https://doi.org/10.1090/S0002-9947-1987-0876474-7
- PDF | Request permission
Abstract:
In this paper, a general Fatou theorem is obtained for functions which are integrals of kernels against measures on${{\mathbf {R}}^n}$. These include solutions of Laplace’s equation on an upper half-space, parabolic equations on an infinite slab and the heat equation on a right half-space. Lebesgue almost everywhere boundary limits are obtained within regions which contain sequences approaching the boundary with any prescribed degree of tangency.References
- D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), 607–694. MR 435594 J. Chabrowski, Private communication.
- Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. MR 0499948
- J. L. Doob, Relative limit theorems in analysis, J. Analyse Math. 8 (1960/61), 289–306. MR 125974, DOI 10.1007/BF02786853
- Raymond Johnson, Representation theorems and Fatou theorems for second-order linear parabolic partial differential equations, Proc. London Math. Soc. (3) 23 (1971), 325–347. MR 289949, DOI 10.1112/plms/s3-23.2.325
- John T. Kemper, Temperatures in several variables: Kernel functions, representations, and parabolic boundary values, Trans. Amer. Math. Soc. 167 (1972), 243–262. MR 294903, DOI 10.1090/S0002-9947-1972-0294903-6
- B. A. Mair, Integral representations for positive solutions of the heat equation on some unbounded domains, Illinois J. Math. 30 (1986), no. 1, 175–184. MR 822390
- B. A. Mair, Boundary behavior of positive solutions of the heat equation on a semi-infinite slab, Trans. Amer. Math. Soc. 295 (1986), no. 2, 687–697. MR 833703, DOI 10.1090/S0002-9947-1986-0833703-2
- Bernard Mair and J. C. Taylor, Integral representation of positive solutions of the heat equation, Théorie du potentiel (Orsay, 1983) Lecture Notes in Math., vol. 1096, Springer, Berlin, 1984, pp. 419–433. MR 890370, DOI 10.1007/BFb0100123
- Alexander Nagel and Elias M. Stein, On certain maximal functions and approach regions, Adv. in Math. 54 (1984), no. 1, 83–106. MR 761764, DOI 10.1016/0001-8708(84)90038-0
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- C. C. Tu, Non-tangential limits of a solution of a boundary-value problem for the heat equation, Math. Systems Theory 3 (1969), 130–138. MR 249840, DOI 10.1007/BF01746519
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 300 (1987), 705-719
- MSC: Primary 31B25; Secondary 31C99, 42B25
- DOI: https://doi.org/10.1090/S0002-9947-1987-0876474-7
- MathSciNet review: 876474