A renewal theorem for random walks in multidimensional time
HTML articles powered by AMS MathViewer
- by J. Galambos, K.-H. Indlekofer and I. Kátai
- Trans. Amer. Math. Soc. 300 (1987), 759-769
- DOI: https://doi.org/10.1090/S0002-9947-1987-0876477-2
- PDF | Request permission
Abstract:
Let $X, {X_1}, {X_2}, \ldots$ be a family of integer valued, independent and identically distributed random variables with positive mean and finite (positive) variance. Let ${S_n} = {X_1} + {X_2} + \cdots + {X_n}$. The asymptotic behavior of the weighted sum $R(k) = \sum {a_n}P({S_n} = k)$, with summation over $n \geq 1$, is investigated as $k \to + \infty$. In the special case ${a_n} = {d_r}(n)$, the number of solutions of the equation $n = {n_1}{n_2} \cdots {n_r}$ in positive integers ${n_j}, 1 \leq j \leq r, R(k)$ becomes the renewal function $Q(k)$ for a random walk in $r$-dimensional time whose terms are distributed as $X$. Under some assumptions on the magnitude of ${a_n}$ and of $A(x) = \sum \nolimits _{n \leq x} {{a_n}}$, (i) it is shown that $R(k)$ is asymptotically distribution free as $k \to + \infty$, (ii) the proper order of magnitude of $R(k)$ is determined, and under some further restrictions on $A(x)$, (iii) a simple asymptotic formula is given for $R(k)$. From (i), the known asymptotic formula for $Q(k)$ with $r = 2$ or 3 is deduced under the sole assumption of finite variance. The relaxation of previous moment assumptions requires a new inequality for the sum of the divisor function ${d_r}(n), 1 \leq n \leq x$, which by itself is of interest.References
- R. N. Bhattacharya and R. Ranga Rao, Normal approximation and asymptotic expansions, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, New York-London-Sydney, 1976. MR 0436272
- Kai Lai Chung and Harry Pollard, An extension of renewal theory, Proc. Amer. Math. Soc. 3 (1952), 303–309. MR 48734, DOI 10.1090/S0002-9939-1952-0048734-5
- J. L. Doob, Renewal theory from the point of view of the theory of probability, Trans. Amer. Math. Soc. 63 (1948), 422–438. MR 25098, DOI 10.1090/S0002-9947-1948-0025098-8
- Paul Embrechts, Makoto Maejima, and Edward Omey, A renewal theorem of Blackwell type, Ann. Probab. 12 (1984), no. 2, 561–570. MR 735853
- P. Erdös, W. Feller, and H. Pollard, A property of power series with positive coefficients, Bull. Amer. Math. Soc. 55 (1949), 201–204. MR 27867, DOI 10.1090/S0002-9904-1949-09203-0
- Janos Galambos and Imre Kátai, A note on random walks in multidimensional time, Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 1, 163–170. MR 809511, DOI 10.1017/S0305004100064057 —, Some remarks on random walks in multidimensional time, Proc. 5th Pannonian Sympos. on Math. Statist. (Visegrád, Hungary, 1985), J. Mogyoródi et al., eds., Reidel, Dordrecht, 1986a.
- P. Greenwood, E. Omey, and J. L. Teugels, Harmonic renewal measures, Z. Wahrsch. Verw. Gebiete 59 (1982), no. 3, 391–409. MR 721635, DOI 10.1007/BF00532230
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford, at the Clarendon Press, 1954. 3rd ed. MR 0067125
- Karl-Heinz Indlekofer, A mean-value theorem for multiplicative functions, Math. Z. 172 (1980), no. 3, 255–271. MR 581443, DOI 10.1007/BF01215089
- Tatsuo Kawata, A theorem of renewal type, K\B{o}dai Math. Sem. Rep. 13 (1961), 185–194. MR 141175
- A. I. Vinogradov and Yu. V. Linnik, Estimate of the sum of the number of divisors in a short segment of an arithmetic progression, Uspehi Mat. Nauk (N.S.) 12 (1957), no. 4(76), 277–280 (Russian). MR 0094312
- Makoto Maejima and Toshio Mori, Some renewal theorems for random walks in multidimensional time, Math. Proc. Cambridge Philos. Soc. 95 (1984), no. 1, 149–154. MR 727089, DOI 10.1017/S0305004100061399
- P. Ney and S. Wainger, The renewal theorem for a random walk in two-dimensional time, Studia Math. 44 (1972), 71–85. MR 322978, DOI 10.4064/sm-44-1-71-85
- V. V. Petrov, Sums of independent random variables, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82, Springer-Verlag, New York-Heidelberg, 1975. Translated from the Russian by A. A. Brown. MR 0388499
- Walter L. Smith, Renewal theory and its ramifications, J. Roy. Statist. Soc. Ser. B 20 (1958), 243–302. MR 99090
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 300 (1987), 759-769
- MSC: Primary 60K05; Secondary 60F05
- DOI: https://doi.org/10.1090/S0002-9947-1987-0876477-2
- MathSciNet review: 876477