## Fredholm, Hodge and Liouville theorems on noncompact manifolds

HTML articles powered by AMS MathViewer

- by Robert Lockhart PDF
- Trans. Amer. Math. Soc.
**301**(1987), 1-35 Request permission

## Abstract:

Fredholm, Liouville, Hodge, and ${L^2}$-cohomology theorems are proved for Laplacians associated with a class of metrics defined on manifolds that have finitely many ends. The metrics are conformal to ones that are asymptotically translation invariant. They are not necessarily complete. The Fredholm results are, of necessity, with respect to weighted Sobolev spaces. Embedding and compact embedding theorems are also proved for these spaces.## References

- Robert A. Adams,
*Sobolev spaces*, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR**0450957** - M. F. Atiyah, V. K. Patodi, and I. M. Singer,
*Spectral asymmetry and Riemannian geometry. I*, Math. Proc. Cambridge Philos. Soc.**77**(1975), 43–69. MR**397797**, DOI 10.1017/S0305004100049410 - Jeff Cheeger,
*On the spectral geometry of spaces with cone-like singularities*, Proc. Nat. Acad. Sci. U.S.A.**76**(1979), no. 5, 2103–2106. MR**530173**, DOI 10.1073/pnas.76.5.2103 - Jeff Cheeger,
*On the Hodge theory of Riemannian pseudomanifolds*, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 91–146. MR**573430** - Jeff Cheeger, Mark Goresky, and Robert MacPherson,
*$L^{2}$-cohomology and intersection homology of singular algebraic varieties*, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 303–340. MR**645745** - Jeff Cheeger,
*Spectral geometry of singular Riemannian spaces*, J. Differential Geom.**18**(1983), no. 4, 575–657 (1984). MR**730920** - Jozef Dodziuk,
*$L^{2}$ harmonic forms on rotationally symmetric Riemannian manifolds*, Proc. Amer. Math. Soc.**77**(1979), no. 3, 395–400. MR**545603**, DOI 10.1090/S0002-9939-1979-0545603-8 - Pierre Grisvard,
*Problème de Dirichlet dans un domaine non régulier*, C. R. Acad. Sci. Paris Sér. A**278**(1974), 1615–1617 (French). MR**352964** - Kunihiko Kodaira,
*Harmonic fields in Riemannian manifolds (generalized potential theory)*, Ann. of Math. (2)**50**(1949), 587–665. MR**31148**, DOI 10.2307/1969552 - Robert B. Lockhart and Robert C. McOwen,
*Elliptic differential operators on noncompact manifolds*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**12**(1985), no. 3, 409–447. MR**837256** - Werner Müller,
*Spectral theory for Riemannian manifolds with cusps and a related trace formula*, Math. Nachr.**111**(1983), 197–288. MR**725778**, DOI 10.1002/mana.19831110109
G. De Rham, - Steven Zucker,
*$L_{2}$ cohomology of warped products and arithmetic groups*, Invent. Math.**70**(1982/83), no. 2, 169–218. MR**684171**, DOI 10.1007/BF01390727

*Variétés différentiables*, Hermann, Paris, 1973.

## Additional Information

- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**301**(1987), 1-35 - MSC: Primary 58G30; Secondary 47B38, 58A12
- DOI: https://doi.org/10.1090/S0002-9947-1987-0879560-0
- MathSciNet review: 879560