On root invariants of periodic classes in $\textrm {Ext}_ A(\textbf {Z}/2,\textbf {Z}/2)$
HTML articles powered by AMS MathViewer
- by Paul Shick
- Trans. Amer. Math. Soc. 301 (1987), 227-237
- DOI: https://doi.org/10.1090/S0002-9947-1987-0879570-3
- PDF | Request permission
Abstract:
We prove that if a class in the cohomology of the mod 2 Steenrod algebra is $\operatorname {mod} 2$-periodic in the sense of [10], then its root invariant must be ${\upsilon _{n + 1}}$-periodic, where ${\upsilon _{n}}$ denotes the $n$th generator of ${\pi _ \ast }({\text {BP}})$.References
- Donald M. Davis and Mark Mahowald, Ext over the subalgebra $A_{2}$ of the Steenrod algebra for stunted projective spaces, Current trends in algebraic topology, Part 1 (London, Ont., 1981) CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, RI, 1982, pp.Β 297β342. MR 686123, DOI 10.2307/2374058
- Donald M. Davis and Mark Mahowald, $v_{1}$- and $v_{2}$-periodicity in stable homotopy theory, Amer. J. Math. 103 (1981), no.Β 4, 615β659. MR 623131, DOI 10.2307/2374044
- David Copeland Johnson and Zen-ichi Yosimura, Torsion in Brown-Peterson homology and Hurewicz homomorphisms, Osaka Math. J. 17 (1980), no.Β 1, 117β136. MR 558323
- Wen Hsiung Lin, On conjectures of Mahowald, Segal and Sullivan, Math. Proc. Cambridge Philos. Soc. 87 (1980), no.Β 3, 449β458. MR 556925, DOI 10.1017/S0305004100056887
- WΓͺn Hsiung Lin, Algebraic Kahn-Priddy theorem, Pacific J. Math. 96 (1981), no.Β 2, 435β455. MR 637982, DOI 10.2140/pjm.1981.96.435
- Wen Hsiung Lin, Cohomology of sub-Hopf-algebras of the Steenrod algebra, J. Pure Appl. Algebra 10 (1977/78), no.Β 2, 101β113. MR 454975, DOI 10.1016/0022-4049(77)90013-5
- W. H. Lin, D. M. Davis, M. E. Mahowald, and J. F. Adams, Calculation of Linβs Ext groups, Math. Proc. Cambridge Philos. Soc. 87 (1980), no.Β 3, 459β469. MR 569195, DOI 10.1017/S0305004100056899
- Mark Mahowald, The metastable homotopy of $S^{n}$, Memoirs of the American Mathematical Society, No. 72, American Mathematical Society, Providence, R.I., 1967. MR 0236923
- Mark Mahowald and Paul Shick, Some root invariants in $\textrm {Ext}_{A}^{\ast } ,^{\ast } (\textbf {Z}/2,\,\textbf {Z}/2)$, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982) Contemp. Math., vol. 19, Amer. Math. Soc., Providence, R.I., 1983, pp.Β 227β231. MR 711054
- Mark Mahowald and Paul Shick, Periodic phenomena in the classical Adams spectral sequence, Trans. Amer. Math. Soc. 300 (1987), no.Β 1, 191β206. MR 871672, DOI 10.1090/S0002-9947-1987-0871672-0
- Haynes R. Miller, Douglas C. Ravenel, and W. Stephen Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math. (2) 106 (1977), no.Β 3, 469β516. MR 458423, DOI 10.2307/1971064
- Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR 860042
- Douglas C. Ravenel, The Segal conjecture for cyclic groups and its consequences, Amer. J. Math. 106 (1984), no.Β 2, 415β446. With an appendix by Haynes R. Miller. MR 737779, DOI 10.2307/2374309
- Reinhard Schultz, Transformation groups and exotic spheres, Group actions on manifolds (Boulder, Colo., 1983) Contemp. Math., vol. 36, Amer. Math. Soc., Providence, RI, 1985, pp.Β 243β267. MR 780966, DOI 10.1090/conm/036/780966 Paul Shick, Thesis, Northwestern, 1984.
- Stephan Stolz, A note on conjugation involutions on homotopy complex projective spaces, Japan. J. Math. (N.S.) 12 (1986), no.Β 1, 69β73. MR 914308, DOI 10.4099/math1924.12.69
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 301 (1987), 227-237
- MSC: Primary 55T15; Secondary 55S10
- DOI: https://doi.org/10.1090/S0002-9947-1987-0879570-3
- MathSciNet review: 879570