Isotype submodules of $p$-local balanced projective groups
Author:
Mark Lane
Journal:
Trans. Amer. Math. Soc. 301 (1987), 313-325
MSC:
Primary 20K21
DOI:
https://doi.org/10.1090/S0002-9947-1987-0879576-4
MathSciNet review:
879576
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: By giving necessary and sufficient conditions for two isotype submodules of a $p$-local balanced projective group to be equivalent, we are able to introduce a general theory of isotype submodules of $p$-local balanced projective groups (or $IB$ modules). Numerous applications of the above result are available particularly for the special class of $IB$ modules introduced by Wick (known as SKT modules). We first show that the class of SKT modules is closed under direct summands, and then we are able to show that if $H$ appears as an isotype submodule of the $p$-local balanced projective group $G$ such that $G/H$ is the coproduct of countably generated torsion groups, then $H$ is an SKT module. Finally we show that $IB$ modules satisfy general structural properties such as transitivity, full transitivity, and the equivalence of ${p^\alpha }$-high submodules.
- D. Arnold, R. Hunter, and F. Richman, Global Azumaya theorems in additive categories, J. Pure Appl. Algebra 16 (1980), no. 3, 223–242. MR 558485, DOI https://doi.org/10.1016/0022-4049%2880%2990026-2 P. Hill, On the classification of abelian groups, Photocopied manuscript, 1967.
- Paul Hill, Isotype subgroups of totally projective groups, Abelian group theory (Oberwolfach, 1981) Lecture Notes in Math., vol. 874, Springer, Berlin-New York, 1981, pp. 305–321. MR 645937
- Paul Hill and Charles Megibben, On the theory and classification of abelian $p$-groups, Math. Z. 190 (1985), no. 1, 17–38. MR 793345, DOI https://doi.org/10.1007/BF01159160
- Paul Hill and Charles Megibben, Axiom $3$ modules, Trans. Amer. Math. Soc. 295 (1986), no. 2, 715–734. MR 833705, DOI https://doi.org/10.1090/S0002-9947-1986-0833705-6
- Paul Hill and Charles Megibben, Torsion free groups, Trans. Amer. Math. Soc. 295 (1986), no. 2, 735–751. MR 833706, DOI https://doi.org/10.1090/S0002-9947-1986-0833706-8
- Roger Hunter, Fred Richman, and Elbert Walker, Warfield modules, Abelian group theory (Proc. Second New Mexico State Univ. Conf., Las Cruces, N. M., 1976) Springer, Berlin, 1977, pp. 87–123. Lecture Notes in Math., Vol. 616. MR 0506216
- Roger Hunter and Elbert Walker, $S$-groups revisited, Proc. Amer. Math. Soc. 82 (1981), no. 1, 13–18. MR 603592, DOI https://doi.org/10.1090/S0002-9939-1981-0603592-0
- Mark Lane, A new characterization for $p$-local balanced projective groups, Proc. Amer. Math. Soc. 96 (1986), no. 3, 379–386. MR 822423, DOI https://doi.org/10.1090/S0002-9939-1986-0822423-1
- Mark Lane, The balanced-projective dimension of $p$-local abelian groups, J. Algebra 109 (1987), no. 1, 1–13. MR 898332, DOI https://doi.org/10.1016/0021-8693%2887%2990159-1
- Mark Lane and Charles Megibben, Balanced projectives and axiom $3$, J. Algebra 111 (1987), no. 2, 457–474. MR 916180, DOI https://doi.org/10.1016/0021-8693%2887%2990230-4
- Fred Richman and Elbert A. Walker, Valuated groups, J. Algebra 56 (1979), no. 1, 145–167. MR 527162, DOI https://doi.org/10.1016/0021-8693%2879%2990330-2 R. Stanton, $S$-groups, preprint.
- Elbert A. Walker, Ulm’s theorem for totally projective groups, Proc. Amer. Math. Soc. 37 (1973), 387–392. MR 311805, DOI https://doi.org/10.1090/S0002-9939-1973-0311805-3
- R. B. Warfield Jr., A classification theorem for abelian $p$-groups, Trans. Amer. Math. Soc. 210 (1975), 149–168. MR 372071, DOI https://doi.org/10.1090/S0002-9947-1975-0372071-2
- R. B. Warfield Jr., Classification theory of abelian groups. I. Balanced projectives, Trans. Amer. Math. Soc. 222 (1976), 33–63. MR 422455, DOI https://doi.org/10.1090/S0002-9947-1976-0422455-X
- Brian D. Wick, A classification theorem for SKT-modules, Proc. Amer. Math. Soc. 80 (1980), no. 1, 44–46. MR 574506, DOI https://doi.org/10.1090/S0002-9939-1980-0574506-6
Retrieve articles in Transactions of the American Mathematical Society with MSC: 20K21
Retrieve articles in all journals with MSC: 20K21
Additional Information
Keywords:
Balanced projective groups,
isotype subgroups,
<IMG WIDTH="14" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" SRC="images/img1.gif" ALT="$c$">-valuation,
equivalence,
SKT modules,
cotorsion hull
Article copyright:
© Copyright 1987
American Mathematical Society