Isotype submodules of $p$-local balanced projective groups
HTML articles powered by AMS MathViewer
- by Mark Lane
- Trans. Amer. Math. Soc. 301 (1987), 313-325
- DOI: https://doi.org/10.1090/S0002-9947-1987-0879576-4
- PDF | Request permission
Abstract:
By giving necessary and sufficient conditions for two isotype submodules of a $p$-local balanced projective group to be equivalent, we are able to introduce a general theory of isotype submodules of $p$-local balanced projective groups (or $IB$ modules). Numerous applications of the above result are available particularly for the special class of $IB$ modules introduced by Wick (known as SKT modules). We first show that the class of SKT modules is closed under direct summands, and then we are able to show that if $H$ appears as an isotype submodule of the $p$-local balanced projective group $G$ such that $G/H$ is the coproduct of countably generated torsion groups, then $H$ is an SKT module. Finally we show that $IB$ modules satisfy general structural properties such as transitivity, full transitivity, and the equivalence of ${p^\alpha }$-high submodules.References
- D. Arnold, R. Hunter, and F. Richman, Global Azumaya theorems in additive categories, J. Pure Appl. Algebra 16 (1980), no. 3, 223–242. MR 558485, DOI 10.1016/0022-4049(80)90026-2 P. Hill, On the classification of abelian groups, Photocopied manuscript, 1967.
- Paul Hill, Isotype subgroups of totally projective groups, Abelian group theory (Oberwolfach, 1981) Lecture Notes in Math., vol. 874, Springer, Berlin-New York, 1981, pp. 305–321. MR 645937
- Paul Hill and Charles Megibben, On the theory and classification of abelian $p$-groups, Math. Z. 190 (1985), no. 1, 17–38. MR 793345, DOI 10.1007/BF01159160
- Paul Hill and Charles Megibben, Axiom $3$ modules, Trans. Amer. Math. Soc. 295 (1986), no. 2, 715–734. MR 833705, DOI 10.1090/S0002-9947-1986-0833705-6
- Paul Hill and Charles Megibben, Torsion free groups, Trans. Amer. Math. Soc. 295 (1986), no. 2, 735–751. MR 833706, DOI 10.1090/S0002-9947-1986-0833706-8
- Roger Hunter, Fred Richman, and Elbert Walker, Warfield modules, Abelian group theory (Proc. Second New Mexico State Univ. Conf., Las Cruces, N.M., 1976) Lecture Notes in Math., Vol. 616, Springer, Berlin, 1977, pp. 87–123. MR 0506216
- Roger Hunter and Elbert Walker, $S$-groups revisited, Proc. Amer. Math. Soc. 82 (1981), no. 1, 13–18. MR 603592, DOI 10.1090/S0002-9939-1981-0603592-0
- Mark Lane, A new characterization for $p$-local balanced projective groups, Proc. Amer. Math. Soc. 96 (1986), no. 3, 379–386. MR 822423, DOI 10.1090/S0002-9939-1986-0822423-1
- Mark Lane, The balanced-projective dimension of $p$-local abelian groups, J. Algebra 109 (1987), no. 1, 1–13. MR 898332, DOI 10.1016/0021-8693(87)90159-1
- Mark Lane and Charles Megibben, Balanced projectives and axiom $3$, J. Algebra 111 (1987), no. 2, 457–474. MR 916180, DOI 10.1016/0021-8693(87)90230-4
- Fred Richman and Elbert A. Walker, Valuated groups, J. Algebra 56 (1979), no. 1, 145–167. MR 527162, DOI 10.1016/0021-8693(79)90330-2 R. Stanton, $S$-groups, preprint.
- Elbert A. Walker, Ulm’s theorem for totally projective groups, Proc. Amer. Math. Soc. 37 (1973), 387–392. MR 311805, DOI 10.1090/S0002-9939-1973-0311805-3
- R. B. Warfield Jr., A classification theorem for abelian $p$-groups, Trans. Amer. Math. Soc. 210 (1975), 149–168. MR 372071, DOI 10.1090/S0002-9947-1975-0372071-2
- R. B. Warfield Jr., Classification theory of abelian groups. I. Balanced projectives, Trans. Amer. Math. Soc. 222 (1976), 33–63. MR 422455, DOI 10.1090/S0002-9947-1976-0422455-X
- Brian D. Wick, A classification theorem for SKT-modules, Proc. Amer. Math. Soc. 80 (1980), no. 1, 44–46. MR 574506, DOI 10.1090/S0002-9939-1980-0574506-6
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 301 (1987), 313-325
- MSC: Primary 20K21
- DOI: https://doi.org/10.1090/S0002-9947-1987-0879576-4
- MathSciNet review: 879576