Positive solutions of systems of semilinear elliptic equations: the pendulum method
HTML articles powered by AMS MathViewer
- by Joseph Glover
- Trans. Amer. Math. Soc. 301 (1987), 327-342
- DOI: https://doi.org/10.1090/S0002-9947-1987-0879577-6
- PDF | Request permission
Abstract:
Conditions are formulated which guarantee the existence of positive solutions for systems of the form \[ \begin {gathered} - \Delta {u_1} + {f_1}({u_1}, \ldots , {u_n}) = {\mu _1}, \hfill \\ - \Delta {u_2} + {f_2}({u_1}, \ldots , {u_n}) = {\mu _2}, \hfill \\ \vdots \quad \quad \quad \quad \quad \vdots \quad \quad \quad \vdots \quad \vdots \hfill \\ - \Delta {u_n} + {f_n}({u_1}, \ldots , {u_n}) = {\mu _n}, \hfill \\ \end {gathered} \], where $\Delta$ is the Laplacian (with Dirichlet boundary conditions) on an open domain in ${\mathbf {R}^d}$, and where each ${\mu _i}$ is a positive measure. The main tools used are probabilistic potential theory, Markov processes, and an iterative scheme which is not a generalization of the one used for quasimonotone systems. Quasimonotonicity is not assumed and new results are obtained even for the case where $\partial {f_k}/\partial {x_j} > 0$ for every $k$ and $j$.References
- P. Baras and M. Pierre, Singularités éliminables pour des équations semi-linéaires, Ann. Inst. Fourier (Grenoble) 34 (1984), no. 1, 185–206 (French, with English summary). MR 743627
- R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. MR 0264757
- N. Bouleau, Théorie du potentiel associée à certains systèmes différentiels, Math. Ann. 255 (1981), no. 3, 335–350 (French). MR 615854, DOI 10.1007/BF01450707
- H. Brézis, Problèmes elliptiques et paraboliques non linéaires avec données mesures, Goulaouic-Meyer-Schwartz Seminar, 1981/1982, École Polytech., Palaiseau, 1982, pp. Exp. No. XX, 13 (French). MR 671617
- Ronald K. Getoor, Markov processes: Ray processes and right processes, Lecture Notes in Mathematics, Vol. 440, Springer-Verlag, Berlin-New York, 1975. MR 0405598
- Ronald K. Getoor and Joseph Glover, Markov processes with identical excessive measures, Math. Z. 184 (1983), no. 3, 287–300. MR 716278, DOI 10.1007/BF01163505
- Joseph Glover and P. J. McKenna, Solving semilinear partial differential equations with probabilistic potential theory, Trans. Amer. Math. Soc. 290 (1985), no. 2, 665–681. MR 792818, DOI 10.1090/S0002-9947-1985-0792818-7
- P.-L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982), no. 4, 441–467. MR 678562, DOI 10.1137/1024101
- Paul-A. Meyer, Probability and potentials, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. MR 0205288
- C. V. Pao, On nonlinear reaction-diffusion systems, J. Math. Anal. Appl. 87 (1982), no. 1, 165–198. MR 653613, DOI 10.1016/0022-247X(82)90160-3
- Wolfgang Walter, Differential and integral inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 55, Springer-Verlag, New York-Berlin, 1970. Translated from the German by Lisa Rosenblatt and Lawrence Shampine. MR 0271508
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 301 (1987), 327-342
- MSC: Primary 35J60; Secondary 35A35
- DOI: https://doi.org/10.1090/S0002-9947-1987-0879577-6
- MathSciNet review: 879577