Global solvability on compact nilmanifolds of three or more steps
HTML articles powered by AMS MathViewer
- by Jacek M. Cygan and Leonard F. Richardson
- Trans. Amer. Math. Soc. 301 (1987), 343-373
- DOI: https://doi.org/10.1090/S0002-9947-1987-0879578-8
- PDF | Request permission
Abstract:
We apply the methods of representation theory of nilpotent Lie groups to study the convergence of Fourier series of smooth global solutions to first order invariant partial differential equations $Df = g$ in ${C^\infty }$ of a compact nilmanifold of three or more steps. We investigate which algebraically well-defined conditions on $D$ in the complexified Lie algebra imply that smooth infinite-dimensional irreducible solutions, when they exist, satisfy estimates strong enough to guarantee uniform convergence of the irreducible (or primary) Fourier series to a smooth global solution. This extends and improves the results of an earlier two step paper.References
- Shmuel Agmon, Lectures on elliptic boundary value problems, Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. MR 0178246
- L. Auslander and J. Brezin, Uniform distribution in solvmanifolds, Advances in Math. 7 (1971), 111–144. MR 301137, DOI 10.1016/0001-8708(71)90044-2
- J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45, Cambridge University Press, New York, 1957. MR 0087708
- Lawrence Corwin, A representation-theoretic criterion for local solvability of left invariant differential operators on nilpotent Lie groups, Trans. Amer. Math. Soc. 264 (1981), no. 1, 113–120. MR 597870, DOI 10.1090/S0002-9947-1981-0597870-6
- Lawrence Corwin and Frederick P. Greenleaf, Solvability of certain left-invariant differential operators by nilmanifold theory, Comm. Pure Appl. Math. 36 (1983), no. 6, 755–765. MR 720592, DOI 10.1002/cpa.3160360603
- Lawrence Corwin, Frederick P. Greenleaf, and Richard Penney, A canonical formula for the distribution kernels of primary projections in $L^{2}$ of a nilmanifold, Comm. Pure Appl. Math. 30 (1977), no. 3, 355–372. MR 430157, DOI 10.1002/cpa.3160300308
- Jacek M. Cygan and Leonard F. Richardson, Global solvability on two-step compact nilmanifolds, Trans. Amer. Math. Soc. 279 (1983), no. 2, 537–554. MR 709567, DOI 10.1090/S0002-9947-1983-0709567-1
- Jiri Dadok and Michael Taylor, Local solvability of constant coefficient partial differential equations as a small divisor problem, Proc. Amer. Math. Soc. 82 (1981), no. 1, 58–60. MR 603601, DOI 10.1090/S0002-9939-1981-0603601-9
- C. S. Herz, Functions which are divergences, Amer. J. Math. 92 (1970), 641–656. MR 290409, DOI 10.2307/2373366
- Lars Hörmander, On the division of distributions by polynomials, Ark. Mat. 3 (1958), 555–568. MR 124734, DOI 10.1007/BF02589517
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), no. 4 (106), 57–110 (Russian). MR 0142001
- A. I. Mal′cev, On a class of homogeneous spaces, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), 9–32 (Russian). MR 0028842
- Sigeru Mizohata, Solutions nulles et solutions non analytiques, J. Math. Kyoto Univ. 1 (1961/62), 271–302 (French). MR 142873, DOI 10.1215/kjm/1250525061
- Calvin C. Moore, Decomposition of unitary representations defined by discrete subgroups of nilpotent groups, Ann. of Math. (2) 82 (1965), 146–182. MR 181701, DOI 10.2307/1970567
- L. Nirenberg and F. Treves, Solvability of a first order linear partial differential equation, Comm. Pure Appl. Math. 16 (1963), 331–351. MR 163045, DOI 10.1002/cpa.3160160308 G. Ratcliff, A symbolic calculus for $3$-step nilpotent Lie groups, Ph.D. thesis, Yale University, 1983.
- Leonard F. Richardson, Decomposition of the $L^{2}$-space of a general compact nilmanifold, Amer. J. Math. 93 (1971), 173–190. MR 284546, DOI 10.2307/2373456
- Leonard F. Richardson, Global solvability on compact Heisenberg manifolds, Trans. Amer. Math. Soc. 273 (1982), no. 1, 309–317. MR 664044, DOI 10.1090/S0002-9947-1982-0664044-0
- Leonard F. Richardson, $N$-step nilpotent Lie groups with flat Kirillov orbits, Colloq. Math. 52 (1987), no. 2, 285–287. MR 893545, DOI 10.4064/cm-52-2-285-287 S. Sternberg, Celestial mechanics. Part II, Benjamin, New York, 1969.
- Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Die Grundlehren der mathematischen Wissenschaften, Band 188, Springer-Verlag, New York-Heidelberg, 1972. MR 0498999
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 301 (1987), 343-373
- MSC: Primary 22E27; Secondary 22E30, 58G25
- DOI: https://doi.org/10.1090/S0002-9947-1987-0879578-8
- MathSciNet review: 879578