CONVERGENCE OF SERIES
OF SCALAR- AND VECTOR-VALUED RANDOM VARIABLES
AND A SUBSEQUENCE PRINCIPLE IN L_2

S. J. DILWORTH

ABSTRACT. Let $(d_n)_{n=1}^\infty$ be a martingale difference sequence in $L_0(X)$, where X is a uniformly convex Banach space. We investigate a necessary condition for convergence of the series $\sum_{n=1}^\infty a_n d_n$. We also prove a related subsequence principle for the convergence of a series of square-integrable scalar random variables.

Introduction. Let $(d_n)_{n=1}^\infty$ be an orthonormal sequence of independent random variables and let $(a_n)_{n=1}^\infty$ be a sequence of real numbers. In [14] Marcinkiewicz and Zygmund proved that if $E|d_n| \geq \delta > 0$ for all $n \geq 1$ then $\sum_{n=1}^\infty a_n^2 < \infty$ whenever $\sum_{n=1}^\infty a_n d_n$ converges almost surely. This theorem has been extended to the case of martingale difference sequences by Chow [4]. In §1 the almost sure convergence of the series $\sum_{n=1}^\infty a_n d_n$ is considered when $(d_n)_{n=1}^\infty$ is a bounded sequence in L_0. Necessary and sufficient conditions are given on such a sequence of independent random variables to be able to conclude that $\sum_{n=1}^\infty a_n^2 < \infty$ whenever $\sum_{n=1}^\infty a_n d_n$ converges almost surely. The same question is treated in §2 for a vector-valued martingale difference sequence $(d_n)_{n=1}^\infty$ in $L_0(X)$ (here X is a Banach space). When $(d_n)_{n=1}^\infty$ is adapted to a regular sequence of σ-fields and X is a q-convex Banach space, necessary and sufficient conditions on $(d_n)_{n=1}^\infty$ are given to be able to conclude that $\sum_{n=1}^\infty |a_n|^q < \infty$ whenever $\sum_{n=1}^\infty a_n d_n$ has bounded partial sums almost surely (or with high probability).

In §3 the theorem of Chow mentioned above is used to deduce a subsequence principle for random variables in L_2 which is related to some theorems of Revesz. A consequence of this is that any orthonormal sequence $(\phi_n)_{n=1}^\infty$ which is bounded away from zero in probability will contain a subsequence $(\phi_{n_k})_{k=1}^\infty$ with the following property: $\sum_{k=1}^\infty a_k^2 < \infty$ whenever $\sum_{k=1}^\infty a_k \phi_{n_k}$ converges almost surely (or merely whenever $\sum_{k=1}^\infty a_k \phi_{n_k}$ has bounded partial sums with high probability). The section closes with an abstract version of a theorem of Zygmund on lacunary Fourier coefficients.

The last part gives some vectorial extensions of a theorem of Aldous and Fremlin [1] stating that $\sum_{n=1}^\infty a_n^2 < \infty$ whenever $\sum_{n=1}^\infty a_n d_n$ converges in L_1 and $(d_n)_{n=1}^\infty$ is a uniformly integrable normalized martingale difference sequence. Some subsequence principles are then obtained for martingale difference sequences in $L_1(X)$.
when X is a q-convex Banach space. A rather more complete picture is given for sequences in $L_p(X)$ for $p > 1$.

1. **Almost sure convergence of a series of independent random variables.** We start with some notation. Let (Ω, \mathcal{F}, P) be a probability space. If $A \in \mathcal{F}$, then $I(A)$ denotes the indicator function of A. The term “random variable” is used to mean an element of $L_0(\Omega)$. We say that a set S of random variables is bounded in probability if S is a bounded subset of $L_0(\Omega)$, i.e., if for each $\varepsilon > 0$ there exists M such that $P(|f| > M) < \varepsilon$ for all $f \in S$. We write Ef for the expectation of f when $f \in L_1(\Omega)$ and $\text{var}(f)$ for the variance of f when $f \in L_2(\Omega)$.

Theorem 1.1. Let $(d_n)_{n=1}^\infty$ be a sequence of independent random variables which is bounded in probability. Then the following are equivalent:

(i) $(d_n)_{n=1}^\infty$ contains no subsequence converging in probability;

(ii) $\sum_{n=1}^\infty a_n^2 < \infty$ whenever $\sum_{n=1}^\infty a_n d_n$ converges almost surely.

Proof. We first assume (i) and deduce (ii). Since $(d_n)_{n=1}^\infty$ is bounded in probability and contains no subsequence converging in probability it follows that there exists $\varepsilon > 0$ such that for all real numbers a and for all sufficiently large n we have $P(|d_n - a| > \varepsilon) > \varepsilon$. Suppose that $(a_n)_{n=1}^\infty$ is a real sequence such that $\sum_{n=1}^\infty a_n d_n$ converges almost surely. Then there exists $M > 0$ such that

$$P\left(\sup_{n \geq 1} \left| \sum_{k=1}^n a_k d_k \right| > M\right) < \frac{\varepsilon}{2},$$

whence

$$P\left(\sup_{n \geq 1} |a_n d_n| \leq 2M\right) > 1 - \frac{\varepsilon}{2}.$$

By Kolmogorov’s three series theorem

$$\sum_{n=1}^\infty a_n^2 \text{var}(d_n I(|a_n d_n| \leq 2M)) < \infty.$$

But

$$P(\{|a_n d_n| \leq 2M\} \cap \{|d_n - E(d_n I(|a_n d_n| \leq 2M)|) \geq \varepsilon\}) > \frac{\varepsilon}{2}$$

for all sufficiently large n, and so

$$\text{var}(d_n I(|a_n d_n| \leq 2M)) > \varepsilon^2/2$$

for all sufficiently large n. Thus $\sum_{n=1}^\infty a_n^2 < \infty$, which proves (ii).

Now suppose that (i) fails. Then there exists a subsequence $(d_{n_k})_{k=1}^\infty$ and a real number b such that $P(|d_{n_k} - b| > 2^{-k}) < 2^{-k}$. Let $\sum_{k=1}^\infty a_k$ be any conditionally convergent series of real numbers. By the Borel-Cantelli lemma $\sum_{k=1}^\infty a_k (d_{n_k} - b)$ converges almost surely, and so $\sum_{k=1}^\infty a_k d_{n_k}$ converges almost surely. \square

Remark. Let $(d_n)_{n=1}^\infty$ be a uniformly integrable sequence of independent random variables in $L_1(\Omega)$ with $E|d_n| = 1$ and $Ed_n = 0$. Then $(d_n)_{n=1}^\infty$ must satisfy (i), and so we deduce the theorem of Chow and Teicher [5, p. 117] that $\sum_{n=1}^\infty a_n^2 < \infty$ whenever $\sum_{n=1}^\infty a_n d_n$ converges almost surely.

Corollary 1.2. Let $(d_n)_{n=1}^\infty$ be a sequence of independent random variables which is bounded in probability. Then the following are equivalent:

(i) $\sum_{n=1}^\infty a_n^2 < \infty$ whenever $\sum_{n=1}^\infty a_n d_n$ converges almost surely;

(ii) $\sum_{n=1}^\infty a_n^2 < \infty$ whenever $\sum_{n=1}^\infty a_n d_{\pi(n)}$ converges almost surely for some permutation π of N.

Proof. Clearly (ii) implies (i). Suppose that (i) holds; then by Theorem 1 $(d_n)_{n=1}^\infty$ contains no subsequence which converges in L_0. If π is a permutation
of N, then \((d_{\pi(n)})_{n=1}^{\infty}\) also contains no subsequence which converges in \(L_0\). So
\[\sum_{n=1}^{\infty} a_n^2 < \infty \] whenever \(\sum_{n=1}^{\infty} a_n d_{\pi(n)}\) converges almost surely. □

In the next corollary let \((X, \| \cdot \|)\) denote a quasi-Banach function space of random variables in \(L_0(\Omega)\); that is, \((X, \| \cdot \|)\) has the following properties:

(i) \(g \in X\) and \(\|g\| = \|f\|\) whenever \(f \in X\) and \(g\) and \(f\) have the same distribution;

(ii) the inclusion mapping of \(X\) into \(L_0(\Omega)\) is continuous (the quasi-norm is assumed to satisfy \(\|x + y\| \leq C(\|x\| + \|y\|)\) for all \(x, y \in X\) and some constant \(C \geq 1\)).

A sequence \((x_n)_{n=1}^{\infty}\) in \(X\) is said to satisfy a lower \(q\)-estimate, where \(0 < q < \infty\), if
\[
\left\| \sum_{n=1}^{\infty} a_n x_n \right\| \geq C \left(\sum_{n=1}^{\infty} |a_n|^q \right)^{1/q}
\]
for some \(C > 0\) and for all real sequences \((a_n)_{n=1}^{\infty}\).

COROLLARY 1.3. Let \((d_n)_{n=1}^{\infty}\) be a sequence of independent random variables in \(X\) which is bounded in probability and contains no subsequence converging in probability. Then \((d_n)_{n=1}^{\infty}\) satisfies a lower 2-estimate.

PROOF. Let \((d_n^{(1)})_{n=1}^{\infty}\) and \((d_n^{(2)})_{n=1}^{\infty}\) be independent copies of \((d_n)_{n=1}^{\infty}\). The symmetry of \((d_n^{(1)} - d_n^{(2)})_{n=1}^{\infty}\) and the first property of \(X\) imply that
\[
\left\| \sum_{k=1}^{m} a_k (d_k^{(1)} - d_k^{(2)}) \right\| \leq 2C \left\| \sum_{k=1}^{n} a_k (d_k^{(1)} - d_k^{(2)}) \right\|
\]
for all \(1 \leq m \leq n\) and reals \(a_1, \ldots, a_n\). It follows that \((d_n^{(1)} - d_n^{(2)})_{n=1}^{\infty}\) is a Schauder basis of its closed linear span \((d_n^{(1)} - d_n^{(2)})_{n=1}^{\infty}\) (see e.g. [12]). Now suppose that the series \(\sum_{n=1}^{\infty} a_n (d_n^{(1)} - d_n^{(2)})\) converges in \(X\). Then by the second property of \(X\) the series converges in \(L_0\) and so converges almost surely because the terms are independent. Since \((d_n^{(1)} - d_n^{(2)})_{n=1}^{\infty}\) is bounded away from zero in probability it follows from Theorem 1 that \(\sum_{n=1}^{\infty} a_n^2 < \infty\). Now define
\[
T: [d_n^{(1)} - d_n^{(2)})_{n=1}^{\infty} \to l_2 \text{ by } T \left(\sum_{n=1}^{\infty} a_n (d_n^{(1)} - d_n^{(2)}) \right) = (a_n)_{n=1}^{\infty}.
\]
Then \(T\) is bounded by the Banach-Steinhaus theorem, and so \((d_n^{(1)} - d_n^{(2)})_{n=1}^{\infty}\) satisfies a lower 2-estimate. But
\[
\left\| \sum_{k=1}^{\infty} a_k d_k \right\| \geq \frac{1}{2C} \left\| \sum_{k=1}^{\infty} a_k (d_k^{(1)} - d_k^{(2)}) \right\|
\]
whence \((d_n)_{n=1}^{\infty}\) satisfies a lower 2-estimate. □

REMARK. Consideration of a sequence of constant random variables shows that the hypothesis that \((d_n)_{n=1}^{\infty}\) contains no subsequence which converges in probability cannot be eliminated. If \((d_n)_{n=1}^{\infty}\) is bounded in \(X\), then \((d_n)_{n=1}^{\infty}\) is bounded in probability by the second property of \(X\). Finally, the hypotheses are met by a nondegenerate independent identically distributed sequence.
2. Almost sure convergence of a vector-valued martingale with respect to a regular sequence of \(\sigma \)-fields. Let \(X \) be a Banach space. Then \(L_0(X) \) denotes the collection of all equivalence classes of measurable functions \(f: \Omega \rightarrow X \) having essentially separable range. For \(0 < p \leq \infty \), \(L_p(X) \) is the collection of those functions \(f \) such that

\[
\|f\|_p = \left(\int |f|^p \, dP \right)^{1/p} < \infty \quad \text{if } 0 < p < \infty
\]

and

\[
\|f\|_\infty = \text{ess sup} \|f(\omega)\| < \infty \quad \text{if } p = \infty.
\]

Let \((\mathcal{F}_n)_{n=0}^{\infty} \) be an increasing sequence of \(\sigma \)-fields contained in \(\mathcal{F} \) and let \((d_n)_{n=1}^{\infty} \) be a sequence in \(L_1(X) \). Say that \((d_n)_{n=1}^{\infty} \) is a martingale difference sequence (with respect to \((\mathcal{F}_n)_{n=0}^{\infty} \)) if \(d_n \) is measurable with respect to \(\mathcal{F}_n \) and \(E(d_n|\mathcal{F}_{n-1}) = 0 \) for all \(n > 1 \). An increasing sequence of atomic \(\sigma \)-fields (i.e., \(\sigma \)-fields generated by a countable set of disjoint atoms) \((\mathcal{F}_n)_{n=0}^{\infty} \) is said to be regular (see e.g., [21, p. 83]) if there exists a constant \(\alpha \) such that \(P(E_{n+1})/P(E_n) \geq \alpha \) for all \(n \geq 0 \) and for all atoms \(E_n \in \mathcal{F}_n, E_{n+1} \in \mathcal{F}_{n+1} \) such that \(P(E_n) > 0, P(E_{n+1}) > 0 \) and \(E_{n+1} \subset E_n \) (this is called the Vitali-Chow condition in [16]).

Note that when \((\mathcal{F}_n)_{n=0}^{\infty} \) is regular and \(f \) is merely measurable with respect to \(\mathcal{F}_n \) then \(E(f|\mathcal{F}_{n-1}) \) still makes sense. Further, a real martingale difference sequence with respect to a regular filtration \((\mathcal{F}_n)_{n=0}^{\infty} \) is regular in the sense of Marcinkiewicz and Zygmund (regular MZ); that is, there exists \(\delta > 0 \) such that \(\delta E^{1/2}(d_n^2|\mathcal{F}_{n-1}) \leq E(|d_n|\mathcal{F}_{n-1}) \) [21, p. 80]. A regular MZ martingale difference sequence is said to be normed if \(E(d_n^2|\mathcal{F}_{n-1}) = 1 \) almost surely. The convergence of martingale transforms of normed regular MZ martingale difference sequences is considered in [4] and [9].

Proposition 2.1. Let \((d_n)_{n=1}^{\infty} \) be a martingale difference sequence in \(L_0(X) \) with respect to a regular sequence of \(\sigma \)-fields \((\mathcal{F}_n)_{n=0}^{\infty} \). Suppose further that \((d_n)_{n=1}^{\infty} \) is bounded away from zero in probability. Then there exists \(\eta > 0 \) with the following property: whenever \((a_n)_{n=1}^{\infty} \) is a real sequence such that

\[
P \left(\sup_{n \geq 1} \left\| \sum_{k=1}^{n} a_k d_k \right\| = \infty \right) < \eta
\]

then there exists a martingale difference sequence \((\tilde{d}_n)_{n=1}^{\infty} \) which is bounded away from zero in probability such that \((\sum_{k=1}^{n} a_k \tilde{d}_k)_{n=1}^{\infty} \) is uniformly bounded in \(L_\infty(X) \).

Proof. Choose \(\varepsilon > 0 \) such that \((d_n I(A))_{n=1}^{\infty} \) is bounded away from zero in probability whenever \(P(A) > 1 - \varepsilon \). Suppose that \((a_n)_{n=1}^{\infty} \) is a real sequence such that

\[
P \left(\sup_{n \geq 1} \left\| \sum_{k=1}^{n} a_k d_k \right\| = \infty \right) < \eta.
\]

There exists \(M > 0 \) such that

\[
P \left(\sup_{n \geq 1} \left\| \sum_{k=1}^{n} a_k d_k \right\| > M \right) < \eta.
\]
For each $n \geq 1$, define e_n thus: for $\omega \in A$, where A is an atom of \mathcal{F}_{n-1}, let $e_n(\omega) = \sup_{\omega \in A} \| a_n d_n(\omega) \|$. Then $(e_n)_{n=1}^\infty$ is a predictable sequence. It follows from the regularity of $(\mathcal{F}_n)_{n=0}^\infty$ that

$$P \left(\sup_{n \geq 1} e_n(\omega) > 2M \right) \leq \frac{1}{\alpha} P \left(\sup_{n \geq 1} \| a_n d_n \| > 2M \right) < \frac{\eta}{\alpha}. $$

Define the stopping time

$$\tau(\omega) = \inf \left\{ n: e_n(\omega) > 2M \text{ or } \sum_{k=1}^n a_k d_k \right\}. $$

Then

$$P(\tau(\omega) < \infty) \leq P \left(\sup_{n \geq 1} e_n(\omega) > 2M \right) + P \left(\sum_{k=1}^n a_k d_k > M \right) < \frac{\eta}{\alpha} + \eta < \varepsilon$$

provided η is sufficiently small. Let $\tilde{d}_n = d_n I(\tau \leq n)$. Then $\sum_{k=1}^n a_k \tilde{d}_k \leq 3M$ and $(\tilde{d}_k)_{k=1}^\infty$ is bounded away from zero in probability. \(\square\)

We now need to recall some facts from the theory of Banach spaces. The modulus of convexity $\delta_X(\varepsilon)$ of a Banach space X is defined for all $0 < \varepsilon \leq 2$ by

$$\delta_X(\varepsilon) = \inf \left\{ 1 - \| (x+y)/2 \|: \| x \| = \| y \| = 1, \| x - y \| = \varepsilon \right\}. $$

X is said to be uniformly convex if $\delta_X(\varepsilon) > 0$ for all $0 < \varepsilon \leq 2$. Suppose that $2 \leq q < \infty$; X is said to be q-convex if X admits an equivalent norm whose modulus of convexity δ satisfies $\delta(\varepsilon) \geq C\varepsilon^q$ for some $C > 0$. In particular, the function space $L_p(S, \Sigma, \mu)$, where (S, Σ, μ) is a measure space, is max$(2, p)$-convex for each $1 < p < \infty$. More generally, every superreflexive Banach space (see [10] for some characterizations of superreflexivity) is q-convex for some $2 \leq q < \infty$ [17].

Finally, recall that a sequence $(x_n)_{n=1}^\infty$ is said to be a monotone basic sequence (e.g., [12]) if

$$\left\| \sum_{k=1}^n a_k x_k \right\| \leq \left\| \sum_{k=1}^m a_k x_k \right\| \quad \text{for all } 1 \leq n \leq m < \infty$$

and all scalars a_1, \ldots, a_m.

Theorem 2.2. Let X be a q-convex Banach space and let $(d_n)_{n=1}^\infty$ be a martingale difference sequence in $L_0(X)$ with respect to a regular sequence of σ-fields $(\mathcal{F}_n)_{n=0}^\infty$. Then the following are equivalent:

(i) $(d_n)_{n=1}^\infty$ is bounded away from zero in probability,

(ii) there exists $\eta > 0$ such that $\sum_{n=1}^\infty |a_n|^q < \infty$ whenever

$$P \left(\sup_{n \geq 1} \left\| \sum_{k=1}^n a_k d_k \right\| = \infty \right) < \eta. $$

Proof. Let $(f_n)_{n=1}^\infty$ be any sequence in $L_0(X)$ and $(a_n)_{n=1}^\infty$ any sequence of scalars. It is easily seen that if $(f_n)_{n=1}^\infty$ is not bounded away from zero in probability then there is a subsequence $(f_{n_k})_{k=1}^\infty$ such that $\sum_{k=1}^\infty a_k f_{n_k}$ converges almost surely.
Thus (ii) implies (i). Suppose that (i) holds; then there exists \(\eta > 0 \) satisfying the conclusion of Proposition 2.1. Let \((a_n)_{n=1}^\infty \) be a real sequence such that

\[
P \left(\sup_{n \geq 1} \left| \sum_{k=1}^{n} a_k d_k \right| = \infty \right) < \eta.
\]

There exists a martingale difference sequence \((\tilde{d}_n)_{n=1}^\infty \) bounded away from zero in probability such that \(\left(\sum_{k=1}^{n} a_k \tilde{d}_k \right)_{n=1}^\infty \) is uniformly bounded in \(L_\infty(X) \). In particular, \((\tilde{d}_n)_{n=1}^\infty \) is a monotone basic sequence in \(L_2(X) \) with

\[
\inf_{n \geq 1} \| \tilde{d}_n \|_2 > 0 \quad \text{and} \quad \sup_{n \geq 1} \left\| \sum_{k=1}^{n} a_k \tilde{d}_k \right\|_2 < \infty.
\]

\(L_2(X) \) is itself \(q \)-convex (see [8]) and a monotone basic sequence in a \(q \)-convex space satisfies a lower \(q \)-estimate [17], and so \(\sum_{n=1}^{\infty} |a_n|^q < \infty \). \(\square \)

Corollary 2.3. Let \(X \) be a \(q \)-convex Banach space and let \((d_n)_{n=1}^\infty \) be a dyadic martingale difference sequence in \(L_0(X) \) which is bounded away from zero in probability. Then \(\sum_{n=1}^{\infty} |a_n|^q < \infty \) whenever \(\sum_{n=1}^{\infty} a_n d_n \) converges almost surely.

3. Subsequence principles for square-integrable random variables. The following result is an immediate consequence of a summability theorem of Chow [4, Theorem 3].

Theorem A. Let \((d_n)_{n=1}^\infty \) be a martingale difference sequence which is normalized in \(L_2(\Omega) \) and satisfies \(E|d_n| \geq c \) for some \(c > 0 \) and for all \(n \geq 1 \). Then there exists \(\varepsilon > 0 \) such that

\[
\sup_{n \geq 1} P \left\{ \left| \sum_{k=1}^{n} a_k d_k \right| > K \right\} \geq \varepsilon \quad \text{for all} \quad K > 0
\]

whenever \(\sum_{n=1}^{\infty} a_n^2 = \infty \). In particular,

\[
P \left\{ \sup_{n \geq 1} \left| \sum_{k=1}^{n} a_k d_k \right| = \infty \right\} \geq \varepsilon \quad \text{whenever} \quad \sum_{n=1}^{\infty} a_n^2 = \infty.
\]

We use Theorem A to deduce the following subsequence principle for almost sure convergence of square-integrable random variables.

Theorem 3.1. Let \((f_n)_{n=1}^{\infty} \) be a normalized sequence in \(L_2(\Omega) \) having no subsequence convergent in \(L_1(\Omega) \). Then there exists \(f \in L_2(\Omega) \), \(\varepsilon > 0 \), and a subsequence \((f_{n_k})_{k=1}^{\infty} \) with the following properties:

(i) \(\sum_{k=1}^{\infty} a_k (f_{n_k} - f) \) converges almost surely and in \(L_2(\Omega) \) whenever \(\sum_{k=1}^{\infty} a_k^2 < \infty \);

(ii) \(P(\sup_{n \geq 1} |\sum_{k=1}^{n} a_k (f_{n_k} - f)| = \infty) > \varepsilon \) whenever \(\sum_{n=1}^{\infty} a_n^2 = \infty \).

Proof. Bounded subsets of \(L_2(\Omega) \) are weakly sequentially compact, and so there exist \(f \in L_2(\Omega) \) and a subsequence \((f_{n_k})_{k=1}^{\infty} \) such that \((f_{n_k} - f)_{k=1}^{\infty} \) is weakly null. Since \((f_n)_{n=1}^{\infty} \) has no subsequence convergent in \(L_1(\Omega) \) we may assume that \(\|f_{n_k} - f\|_1 > 2c \) for some \(c > 0 \) and for all \(k \geq 1 \). By a well-known argument (e.g., [3, p. 243]) we may also assume by passing to a further subsequence that
there exists a martingale difference sequence \((g_k)\) of simple functions such that
\[
\sum_{k=1}^{\infty} \|f_{n_k} - f - g_k\|_2 < c.
\]
By Theorem A there exists \(\tilde{\varepsilon} > 0\) such that
\[
\sum_{k=1}^{\infty} a_k^2 < \infty \quad \text{whenever} \quad P \left(\sup_{n \geq 1} \left| \sum_{k=1}^{n} a_k g_k \right| = \infty \right) < \tilde{\varepsilon}.
\]

By Hölder’s inequality \((f_{n_k} - f)_{k=1}^{\infty}\) is uniformly integrable, and so there exists \(\varepsilon > 0\) such that
\[
\int |f_{n_k} - f| I(A) \, dP < c \quad \text{for all} \quad k \geq 1 \quad \text{whenever} \quad P(A) < \varepsilon; \quad \text{moreover,}
\]
we may assume that \(\varepsilon \leq \tilde{\varepsilon}\). Suppose now that \((a_k)_{k=1}^{\infty}\) is a real sequence and that
\[
P \left(\sup_{m \geq 1} \left| \sum_{k=1}^{m} a_k (f_{n_k} - f) \right| = \infty \right) < \varepsilon.
\]

Then there exists \(M > 0\) such that \(P(A) > 1 - \varepsilon\), where
\[
A = \left\{ \sup_{m \geq 1} \left| \sum_{k=1}^{m} a_k (f_{n_k} - f) \right| \leq M \right\}.
\]

So
\[
2MP(A) \geq \int |a_k (f_{n_k} - f)| I(A) \, dP \geq c|a_k|.
\]

Hence \(\sup_{k \geq 1} |a_k| < \infty\), and it follows that \(\sum_{k=1}^{\infty} a_k (f_{n_k} - f - g_k)\) converges absolutely almost surely. So
\[
P \left(\sup_{n \geq 1} \left| \sum_{k=1}^{n} a_k g_k \right| = \infty \right) < \varepsilon \leq \tilde{\varepsilon},
\]
whence \(\sum_{n=1}^{\infty} a_n^2 < \infty\). This completes the proof of (ii).

Property (i) is a well-known theorem of Revesz (see [18]) and follows easily from the martingale convergence theorem (see [3]). Indeed, \(\sum_{n=1}^{\infty} a_n g_n\) converges almost surely and in \(L_2(\Omega)\) whenever \(\sum_{n=1}^{\infty} a_n^2 < \infty\), and so the same is true of \(\sum_{k=1}^{\infty} a_k (f_{n_k} - f)\).

Remark. The hypothesis that \((f_n)_{n=1}^{\infty}\) contains no subsequence convergent in \(L_1\) is used only in the proof of property (ii). Revesz proved in [19] that something like property (ii) could be made to work for the case in which \((f_n)_{n=1}^{\infty}\) is a uniformly bounded sequence in \(L_\infty(\Omega)\).

Combining Theorem 3.1 with the proof of “(i) implies (ii)” in Theorem 2.2 gives the following result.

Theorem 3.2. Let \((f_n)_{n=1}^{\infty}\) be weakly null in \(L_2(\Omega)\). Then the following are equivalent:

(i) \((f_n)_{n=1}^{\infty}\) contains a subsequence which is bounded away from zero in probability;

(ii) there exists \(\varepsilon > 0\) and a subsequence \((f_{n_k})_{k=1}^{\infty}\) with the following properties:

(a) \(\sum_{k=1}^{\infty} a_k f_{n_k}\) converges almost surely and in \(L_2(\Omega)\) whenever \(\sum_{k=1}^{\infty} a_k^2 < \infty\);

(b) \(P\{ \sup_{m \geq 1} | \sum_{k=1}^{m} a_k f_{n_k} | = \infty \} > \varepsilon \) whenever \(\sum_{k=1}^{\infty} a_k^2 = \infty\).

Remark. The last result applies, in particular, to an arbitrary orthonormal system in \(L_2(\Omega)\). In this setting (ii) corresponds to the fact that every orthonormal system \((\phi_n)_{n=1}^{\infty}\) contains a subsystem \((\phi_{n_k})_{k=1}^{\infty}\) that is a system of convergence (meaning \(\sum_{k=1}^{\infty} a_k \phi_{n_k}\) converges whenever \(\sum_{k=1}^{\infty} a_k^2 < \infty\) (see [2, p. 156])).
Whereas (ii) resembles the fact that a lacunary trigonometric series
\[\sum_{k=1}^{\infty} (a_{n_k} \cos n_k t + b_{n_k} \sin n_k t) \]
diverges almost everywhere when \(\sum_{k=1}^{\infty} (a_{n_k}^2 + b_{n_k}^2) = \infty \) [22, p. 203]. (An increasing sequence of positive integers \((n_k)_{k=1}^{\infty}\) is lacunary if \(n_{k+1}/n_k > t \) for some \(t > 1 \) and for all \(k \).)

To conclude this part we prove an abstract version of a related theorem of Zygmund on lacunary Fourier coefficients [23, p. 132]. Let \((\phi_n)_{n=1}^{\infty}\) be a uniformly bounded orthonormal system in \(L_2(0,1) \). For \(f \in L_1(0,1) \), let \(\hat{f}(n) = \int f \phi_n dt \) for all \(n \geq 1 \).

Theorem 3.3. Let \((\phi_n)_{n=1}^{\infty}\) be a uniformly bounded orthonormal system. Every sequence of positive integers \((n_k)_{k=1}^{\infty}\) contains a subsequence \((n_{k_m})_{m=1}^{\infty}\) such that \(\sum_{m=1}^{\infty} \hat{f}(n_{k_m})^2 < \infty \) whenever \(f \in L_p(0,1) \) for some \(p > 1 \). Moreover, there exists \(f \in L_1(0,1) \) such that \(\sum_{k=1}^{\infty} \hat{f}(n_k)^2 = \infty \).

Proof. By [11, Corollary 6] and a diagonal argument the subsequence \((n_{k_m})_{m=1}^{\infty}\) may be chosen so that \((\phi_{n_{k_m}})_{m=1}^{\infty}\) is equivalent to the unit vector basis of \(l_2 \) in \(L_p \) for all \(p > 2 \); that is, there exists \(C_p > 0 \) such that for all \(m \geq 1 \) and for all scalars \(a_1, \ldots, a_m \), we have
\[
\frac{1}{C_p} \left(\sum_{k=1}^{m} a_k^2 \right)^{1/2} \leq \left\| \sum_{k=1}^{m} a_k \phi_{n_{k_m}} \right\|_p \leq C_p \left(\sum_{k=1}^{m} a_k^2 \right)^{1/2}.
\]

By the results of [11] the same is true for all \(p > 0 \). Let \(P(f) = \sum_{k=1}^{\infty} \hat{f}(n_{k_m}) \phi_{n_{k_m}} \). Then \(P \) is an orthogonal projection on \(L_2 \) and so is bounded. Since the \(L_2 \) and \(L_p \) norms are equivalent on the closed linear span of \((\phi_{n_{k_m}})_{m=1}^{\infty}\) it follows that \(P \) is bounded on \(L_p(0,1) \) for all \(p > 2 \). For \(1 < p < 2 \), \(P: L_p(0,1) \rightarrow L_p(0,1) \) is bounded because it is the adjoint of \(P: L_q(0,1) \rightarrow L_q(0,1) \), where \(1/p + 1/q = 1 \), which is bounded. This proves the first part of the proposition.

To show the last part, suppose on the contrary that \(\sum_{k=1}^{\infty} \hat{f}(n_k)^2 < \infty \) for all \(f \in L_1 \), and so, in particular, that \(\sum_{k=1}^{\infty} \hat{f}(n_k')^2 < \infty \). But then by the Banach-Steinhaus theorem \(P \) is a bounded projection on \(L_1(0,1) \) whose range is \(\{ \varphi_{n_k'} \}_{k=1}^{\infty} \), which is impossible because \(L_1(0,1) \) contains no complemented subspace isomorphic to a Hilbert space. \(\square \)

Remark. A Rademacher-like property of subsequences of random variables in \(L_p \) is also proved in [15, Lemma 2.1].

4. **Convergence in \(L_1(X) \).** The following is a vectorial generalization of [1, §4]. Since the proof is essentially the same it has been omitted.

Proposition 4.1. Let \((d_n)_{n=1}^{\infty}\) be a uniformly integrable martingale difference sequence normalized in \(L_1(X) \). Suppose that \((a_n)_{n=1}^{\infty}\) is a real sequence such that \(\sum_{n=1}^{\infty} a_n d_n \) converges in \(L_1(X) \). Then there exists a martingale difference sequence \((d_n)_{n=1}^{\infty}\), bounded away from zero in \(L_1(X) \), such that \((\sum_{k=1}^{n} a_k d_k)_{n=1}^{\infty} \) is uniformly bounded in \(L_\infty(X) \).
THEOREM 4.2. Suppose that X is a q-convex Banach space and that $(d_n)_{n=1}^{\infty}$ is a uniformly integrable martingale difference sequence normalized in $L_1(X)$. Then $(d_n)_{n=1}^{\infty}$ satisfies a lower q-estimate.

PROOF. This follows from Proposition 4.1 together with the proof of Theorem 2.2. □

THEOREM 4.3. Suppose that X is a q-convex Banach space and that $(d_n)_{n=1}^{\infty}$ is a martingale difference sequence normalized in $L_1(X)$. There exists a subsequence $(d_{n_k})_{k=1}^{\infty}$ which satisfies a lower q-estimate.

PROOF. If $(d_n)_{n=1}^{\infty}$ is uniformly integrable then $(d_n)_{n=1}^{\infty}$ satisfies a lower q-estimate. Otherwise, by the results of [20], one can extract a subsequence $(d_{n_k})_{k=1}^{\infty}$ equivalent to the unit vector basis of the sequence space l_1. Then $(d_{n_k})_{k=1}^{\infty}$ satisfies a lower 1-estimate, and a fortiori a lower q-estimate. □

It is possible that Theorem 4.3 remains valid for arbitrary sequences in $L_1(X)$ which are not relatively compact, and this is the case in $L_p(X)$ for $1 < p \leq q$. For if X is q-convex then $L_p(X)$ is q-convex for $1 < p \leq q$, and so it follows from the next proposition that any normalized sequence $(f_n)_{n=1}^{\infty}$ in $L_p(X)$ which is not relatively compact contains a subsequence satisfying a lower q-estimate.

PROPOSITION 4.4. Suppose that X is a q-convex Banach space and that $(x_n)_{n=1}^{\infty}$ is a normalized sequence in X which is not relatively compact. Then $(x_n)_{n=1}^{\infty}$ contains a subsequence satisfying a lower q-estimate.

PROOF. By passing to a subsequence we may assume that $(x_n)_{n=1}^{\infty}$ contains no norm convergent subsequence. Since X is reflexive its bounded subsets are relatively weakly sequentially compact, and so we may further assume that there exists x in X such that $(x_n - x)_{n=1}^{\infty}$ is weakly null (and bounded away from zero). By [6, Proposition 2.4] $(x_n - x)_{n=1}^{\infty}$ contains a subsequence $(x_{n_k} - x)_{k=1}^{\infty}$ satisfying a lower q-estimate, and by [1, §2] there exists $m \geq 1$ such that $(x_{n_k})_{k=m}^{\infty}$ satisfies a lower q-estimate. □

ACKNOWLEDGMENT. I am grateful to the referee for many helpful suggestions and for supplying the far superior proof of Proposition 2.1.

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS AT AUSTIN, AUSTIN, TEXAS 78712