Convergence of series of scalar- and vector-valued random variables and a subsequence principle in $L_ 2$
HTML articles powered by AMS MathViewer
- by S. J. Dilworth
- Trans. Amer. Math. Soc. 301 (1987), 375-384
- DOI: https://doi.org/10.1090/S0002-9947-1987-0879579-X
- PDF | Request permission
Abstract:
Let $({d_n})_{n = 1}^\infty$ be a martingale difference sequence in ${L_0}(X)$, where $X$ is a uniformly convex Banach space. We investigate a necessary condition for convergence of the series $\sum {_{n = 1}^\infty {a_n}{d_n}}$. We also prove a related subsequence principle for the convergence of a series of square-integrable scalar random variables.References
- D. J. Aldous and D. H. Fremlin, Colacunary sequences in $L$-spaces, Studia Math. 71 (1981/82), no. 3, 297–304. MR 667318, DOI 10.4064/sm-71-3-297-304
- G. Alexits, Convergence problems of orthogonal series, International Series of Monographs in Pure and Applied Mathematics, Vol. 20, Pergamon Press, New York-Oxford-Paris, 1961. Translated from the German by I. Földer. MR 0218827
- S. D. Chatterji, A general strong law, Invent. Math. 9 (1969/70), 235–245. MR 266276, DOI 10.1007/BF01404326
- Y. S. Chow, Martingale extensions of a theorem of Marcinkiewicz and Zygmund, Ann. Math. Statist. 40 (1969), 427–433. MR 239642, DOI 10.1214/aoms/1177697707
- Yuan Shih Chow and Henry Teicher, Probability theory, Springer-Verlag, New York-Heidelberg, 1978. Independence, interchangeability, martingales. MR 513230, DOI 10.1007/978-1-4684-0062-5
- S. J. Dilworth, Universal noncompact operators between super-reflexive Banach spaces and the existence of a complemented copy of Hilbert space, Israel J. Math. 52 (1985), no. 1-2, 15–27. MR 815597, DOI 10.1007/BF02776075
- Leonard E. Dor, Some inequalities for martingales and applications to the study of $L_{1}$, Math. Proc. Cambridge Philos. Soc. 89 (1981), no. 1, 135–148. MR 591980, DOI 10.1017/S0305004100058023
- Tadeusz Figiel and Gilles Pisier, Séries aléatoires dans les espaces uniformément convexes ou uniformément lisses, C. R. Acad. Sci. Paris Sér. A 279 (1974), 611–614 (French). MR 358295
- Richard F. Gundy, The martingale version of a theorem of Marcinkiewicz and Zygmund, Ann. Math. Statist. 38 (1967), 725–734. MR 215353, DOI 10.1214/aoms/1177698865
- Robert C. James, Some self-dual properties of normed linear spaces, Symposium on Infinite-Dimensional Topology (Louisiana State Univ., Baton Rouge, La., 1967) Ann. of Math. Studies, No. 69, Princeton Univ. Press, Princeton, N.J., 1972, pp. 159–175. MR 0454600
- M. I. Kadec and A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces $L_{p}$, Studia Math. 21 (1961/62), 161–176. MR 152879, DOI 10.4064/sm-21-2-161-176
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056, DOI 10.1007/978-3-642-66557-8
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367, DOI 10.1007/978-3-662-35347-9 J. Marcinkiewicz and A. Zygmund, Sur les fonctions independants, Fund. Math. 29 (1937), 60-90.
- Terry R. McConnell, Stable-bounded subsets of $L^\alpha$, and sample unboundedness of symmetric stable processes, J. Funct. Anal. 60 (1985), no. 2, 265–279. MR 777239, DOI 10.1016/0022-1236(85)90053-9
- J. Neveu, Discrete-parameter martingales, Revised edition, North-Holland Mathematical Library, Vol. 10, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. Translated from the French by T. P. Speed. MR 0402915
- Gilles Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), no. 3-4, 326–350. MR 394135, DOI 10.1007/BF02760337
- P. Révész, On a problem of Steinhaus, Acta Math. Acad. Sci. Hungar. 16 (1965), 311–318 (English, with Russian summary). MR 185647, DOI 10.1007/BF01904839
- Pál Révész, The laws of large numbers, Probability and Mathematical Statistics, Vol. 4, Academic Press, New York-London, 1968. MR 0245079
- Haskell P. Rosenthal, On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970), 13–36. MR 270122, DOI 10.4064/sm-37-1-13-36
- William F. Stout, Almost sure convergence, Probability and Mathematical Statistics, Vol. 24, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0455094
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776 —, Trigonometric series, Vol. II, Cambridge Univ. Press, 1959.
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 301 (1987), 375-384
- MSC: Primary 60B12; Secondary 60G42
- DOI: https://doi.org/10.1090/S0002-9947-1987-0879579-X
- MathSciNet review: 879579