Hamiltonian analysis of the generalized problem of Bolza
Author:
F. H. Clarke
Journal:
Trans. Amer. Math. Soc. 301 (1987), 385-400
MSC:
Primary 49B05; Secondary 58E30
DOI:
https://doi.org/10.1090/S0002-9947-1987-0879580-6
MathSciNet review:
879580
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: On étudie le problème généralisé de Bolza en calcul des variations. Presented at the International Conference on the Calculus of Variations held to honour the memory of Leonida Tonelli, Scuola Normale Superiore, Pisa, March 1986. On obtient des conditions nécessaires en forme hamiltonienne, sous des hypothèses moins exigeantes qu’antérieurement, en particulier sans qualification sur les contraintes. Le lien avec les problèmes de contrôle optimal est développé, ainsi que l’apport de ces conditions à la théorie de la régularité de la solution. We obtain necessary conditions in Hamiltonian form for the generalized problem of Bolza in the calculus of variations. These are proven in part by an extension to Hamiltonians of Tonelli’s method of auxiliary Lagrangians. One version of the conditions is of a new character since it is obtained in the absence of any constraint qualification on the data. A new regularity theorem is shown to be a consequence of the necessary conditions.
- Frank H. Clarke, The generalized problem of Bolza, SIAM J. Control Optim. 14 (1976), no. 4, 682–699. MR 412926, DOI https://doi.org/10.1137/0314044
- Frank H. Clarke, Extremal arcs and extended Hamiltonian systems, Trans. Amer. Math. Soc. 231 (1977), no. 2, 349–367. MR 442784, DOI https://doi.org/10.1090/S0002-9947-1977-0442784-4
- Frank H. Clarke, Optimization and nonsmooth analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983. A Wiley-Interscience Publication. MR 709590
- Frank H. Clarke and R. B. Vinter, On the conditions under which the Euler equation or the maximum principle hold, Appl. Math. Optim. 12 (1984), no. 1, 73–79. MR 756513, DOI https://doi.org/10.1007/BF01449034
- F. H. Clarke and R. B. Vinter, Regularity properties of solutions to the basic problem in the calculus of variations, Trans. Amer. Math. Soc. 289 (1985), no. 1, 73–98. MR 779053, DOI https://doi.org/10.1090/S0002-9947-1985-0779053-3
- R. Tyrrell Rockafellar, Existence theorems for general control problems of Bolza and Lagrange, Advances in Math. 15 (1975), 312–333. MR 365273, DOI https://doi.org/10.1016/0001-8708%2875%2990140-1
- R. T. Rockafellar, Extensions of subgradient calculus with applications to optimization, Nonlinear Anal. 9 (1985), no. 7, 665–698. MR 796082, DOI https://doi.org/10.1016/0362-546X%2885%2990012-4
- Vera Zeidan, Sufficient conditions for the generalized problem of Bolza, Trans. Amer. Math. Soc. 275 (1983), no. 2, 561–586. MR 682718, DOI https://doi.org/10.1090/S0002-9947-1983-0682718-3
Retrieve articles in Transactions of the American Mathematical Society with MSC: 49B05, 58E30
Retrieve articles in all journals with MSC: 49B05, 58E30
Additional Information
Keywords:
Bolza problem,
calculus of variations,
Hamiltonian,
necessary conditions,
nonsmooth analysis,
generalized gradients,
regularity
Article copyright:
© Copyright 1987
American Mathematical Society