Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society, the Transactions of the American Mathematical Society (TRAN) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.43.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Hamiltonian analysis of the generalized problem of Bolza
HTML articles powered by AMS MathViewer

by F. H. Clarke PDF
Trans. Amer. Math. Soc. 301 (1987), 385-400 Request permission

Abstract:

On étudie le problème généralisé de Bolza en calcul des variations. Presented at the International Conference on the Calculus of Variations held to honour the memory of Leonida Tonelli, Scuola Normale Superiore, Pisa, March 1986. On obtient des conditions nécessaires en forme hamiltonienne, sous des hypothèses moins exigeantes qu’antérieurement, en particulier sans qualification sur les contraintes. Le lien avec les problèmes de contrôle optimal est développé, ainsi que l’apport de ces conditions à la théorie de la régularité de la solution. We obtain necessary conditions in Hamiltonian form for the generalized problem of Bolza in the calculus of variations. These are proven in part by an extension to Hamiltonians of Tonelli’s method of auxiliary Lagrangians. One version of the conditions is of a new character since it is obtained in the absence of any constraint qualification on the data. A new regularity theorem is shown to be a consequence of the necessary conditions.
References
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 49B05, 58E30
  • Retrieve articles in all journals with MSC: 49B05, 58E30
Additional Information
  • © Copyright 1987 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 301 (1987), 385-400
  • MSC: Primary 49B05; Secondary 58E30
  • DOI: https://doi.org/10.1090/S0002-9947-1987-0879580-6
  • MathSciNet review: 879580