Induced group actions, representations and fibered skew product extensions
Author:
R. C. Fabec
Journal:
Trans. Amer. Math. Soc. 301 (1987), 489-513
MSC:
Primary 28D15; Secondary 22D40, 46M20
DOI:
https://doi.org/10.1090/S0002-9947-1987-0882701-2
MathSciNet review:
882701
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a locally compact group acting ergodically on
. We introduce the notion of an action of this group action and study the notions of induced group actions, ergodicity, and fibered product extensions in this context. We also characterize fibered skew product actions built over a cocycle.
- [1] Edward G. Effros, The Borel space of von Neumann algebras on a separable Hilbert space, Pacific J. Math. 15 (1965), 1153–1164. MR 185456
- [2] R. C. Fabec, Normal ergodic actions and extensions, Israel J. Math. 40 (1981), no. 2, 175–186. MR 634904, https://doi.org/10.1007/BF02761908
- [3] R. C. Fabec, Cocycles, extensions of group actions and bundle representations, J. Funct. Anal. 56 (1984), no. 1, 79–98. MR 735705, https://doi.org/10.1016/0022-1236(84)90026-0
- [4] Paul R. Halmos and John von Neumann, Operator methods in classical mechanics. II, Ann. of Math. (2) 43 (1942), 332–350. MR 6617, https://doi.org/10.2307/1968872
- [5] George W. Mackey, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134–165. MR 89999, https://doi.org/10.1090/S0002-9947-1957-0089999-2
- [6] George W. Mackey, Point realizations of transformation groups, Illinois J. Math. 6 (1962), 327–335. MR 0143874
- [7] George W. Mackey, Ergodic theory, group theory, and differential geometry, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1184–1191. MR 165034, https://doi.org/10.1073/pnas.50.6.1184
- [8] George W. Mackey, Ergodic transformation groups with a pure point spectrum, Illinois J. Math. 8 (1964), 593–600. MR 0172961
- [9] George W. Mackey, Ergodic theory and virtual groups, Math. Ann. 166 (1966), 187–207. MR 201562, https://doi.org/10.1007/BF01361167
- [10] Calvin C. Moore, Group extensions and cohomology for locally compact groups. III, Trans. Amer. Math. Soc. 221 (1976), no. 1, 1–33. MR 414775, https://doi.org/10.1090/S0002-9947-1976-0414775-X
- [11] Calvin C. Moore and Robert J. Zimmer, Groups admitting ergodic actions with generalized discrete spectrum, Invent. Math. 51 (1979), no. 2, 171–188. MR 528022, https://doi.org/10.1007/BF01390227
- [12] K. R. Parthasarathy, Probability measures on metric spaces, Probability and Mathematical Statistics, No. 3, Academic Press, Inc., New York-London, 1967. MR 0226684
- [13] Arlan Ramsay, Virtual groups and group actions, Advances in Math. 6 (1971), 253–322 (1971). MR 281876, https://doi.org/10.1016/0001-8708(71)90018-1
- [14] Arlan Ramsay, Boolean duals of virtual groups, J. Functional Analysis 15 (1974), 56–101. MR 0374386, https://doi.org/10.1016/0022-1236(74)90026-3
- [15] Arlan Ramsay, Subobjects of virtual groups, Pacific J. Math. 87 (1980), no. 2, 389–454. MR 592744
- [16] Arlan Ramsay, Topologies on measured groupoids, J. Functional Analysis 47 (1982), no. 3, 314–343. MR 665021, https://doi.org/10.1016/0022-1236(82)90110-0
- [17] Caroline Series, The Poincaré flow of a foliation, Amer. J. Math. 102 (1980), no. 1, 93–128. MR 556888, https://doi.org/10.2307/2374172
- [18] Joel J. Westman, Virtual group homomorphisms with dense range, Illinois J. Math. 20 (1976), no. 1, 41–47. MR 0393425
- [19] Robert J. Zimmer, Compact nilmanifold extensions of ergodic actions, Trans. Amer. Math. Soc. 223 (1976), 397–406. MR 422584, https://doi.org/10.1090/S0002-9947-1976-0422584-0
- [20] Robert J. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), no. 3, 373–409. MR 0409770
- [21] Robert J. Zimmer, Ergodic actions with generalized discrete spectrum, Illinois J. Math. 20 (1976), no. 4, 555–588. MR 0414832
- [22] Robert J. Zimmer, Cocycles and the structure of ergodic group actions, Israel J. Math. 26 (1977), no. 3-4, 214–220. MR 437721, https://doi.org/10.1007/BF03007643
- [23] Robert J. Zimmer, Normal ergodic actions, J. Functional Analysis 25 (1977), no. 3, 286–305. MR 0447530, https://doi.org/10.1016/0022-1236(77)90075-1
- [24] Robert J. Zimmer, Orbit spaces of unitary representations, ergodic theory, and simple Lie groups, Ann. of Math. (2) 106 (1977), no. 3, 573–588. MR 466406, https://doi.org/10.2307/1971068
- [25] Robert J. Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Functional Analysis 27 (1978), no. 3, 350–372. MR 0473096, https://doi.org/10.1016/0022-1236(78)90013-7
- [26] Robert J. Zimmer, Induced and amenable ergodic actions of Lie groups, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 3, 407–428. MR 521638
Retrieve articles in Transactions of the American Mathematical Society with MSC: 28D15, 22D40, 46M20
Retrieve articles in all journals with MSC: 28D15, 22D40, 46M20
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1987-0882701-2
Article copyright:
© Copyright 1987
American Mathematical Society