Supersymmetry, twistors, and the Yang-Mills equations
Author:
Michael Eastwood
Journal:
Trans. Amer. Math. Soc. 301 (1987), 615-635
MSC:
Primary 32L25; Secondary 53C05, 53C80, 81E13
DOI:
https://doi.org/10.1090/S0002-9947-1987-0882706-1
MathSciNet review:
882706
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: This article investigates a supersymmetric proof due to Witten of the twistor description of general Yang-Mills fields due to Green, Isenberg, and Yasskin. In particular, some rigor is added and the rather complicated calculations are given in detail.
- [1] Marjorie Batchelor, The structure of supermanifolds, Trans. Amer. Math. Soc. 253 (1979), 329–338. MR 536951, https://doi.org/10.1090/S0002-9947-1979-0536951-0
- [2] N. P. Buchdahl, Analysis on analytic spaces and non-self-dual Yang-Mills fields, Trans. Amer. Math. Soc. 288 (1985), no. 2, 431–469. MR 776387, https://doi.org/10.1090/S0002-9947-1985-0776387-3
- [3] M. G. Eastwood, Ambitwistors, Twistor Newsletter 9 (1979), 55-58.
- [4] Michael G. Eastwood, Roger Penrose, and R. O. Wells Jr., Cohomology and massless fields, Comm. Math. Phys. 78 (1980/81), no. 3, 305–351. MR 603497
- [5] Michael G. Eastwood, The generalized Penrose-Ward transform, Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 1, 165–187. MR 764506, https://doi.org/10.1017/S030500410006271X
- [6] Michael Eastwood and Claude LeBrun, Thickening and supersymmetric extensions of complex manifolds, Amer. J. Math. 108 (1986), no. 5, 1177–1192. MR 859775, https://doi.org/10.2307/2374601
- [7] Alan Ferber, Supertwistors and conformal supersymmetry, Nuclear Phys. B 132 (1978), no. 1-2, 55–64. MR 495851, https://doi.org/10.1016/0550-3213(78)90257-2
- [8] Gerd Fischer, Complex analytic geometry, Lecture Notes in Mathematics, Vol. 538, Springer-Verlag, Berlin-New York, 1976. MR 0430286
- [9] P. S. Green, J. Isenberg, and P. B. Yasskin, Non-self-dual gauge fields, Phys. Lett. B 78 (1978), 462-464.
- [10] Paul Green, On holomorphic graded manifolds, Proc. Amer. Math. Soc. 85 (1982), no. 4, 587–590. MR 660609, https://doi.org/10.1090/S0002-9939-1982-0660609-6
- [11] J. Harnad, J. Hurtubise, M. Légaré, and S. Shnider, Constraint equations and field equations in supersymmetric 𝑁=3 Yang-Mills theory, Nuclear Phys. B 256 (1985), no. 4, 609–620. MR 802589, https://doi.org/10.1016/0550-3213(85)90410-9
- [12] G. M. Henkin and Yu. I. Manin, Twistor description of classical Yang-Mills-Dirac fields, Phys. Lett. B 95 (1980), no. 3-4, 405–408. MR 590021, https://doi.org/10.1016/0370-2693(80)90178-1
- [13] Bertram Kostant, Graded manifolds, graded Lie theory, and prequantization, Differential geometrical methods in mathematical physics (Proc. Sympos., Univ. Bonn, Bonn, 1975) Springer, Berlin, 1977, pp. 177–306. Lecture Notes in Math., Vol. 570. MR 0580292
- [14] Yu. I. Manin, Gauge fields and holomorphic geometry, J. Soviet Math. 21 (1983), 465-507.
- [15] Roger Penrose, Applications of negative dimensional tensors, Combinatorial Mathematics and its Applications (Proc. Conf., Oxford, 1969), Academic Press, London, 1971, pp. 221–244. MR 0281657
- [16] -, Twistor theory, its aims and achievements, Quantum Gravity: An Oxford Symposium, Clarendon Press, Oxford, 1975, pp. 268-407.
- [17] R. Penrose and R. S. Ward, Twistors for flat and curved space-time, General relativity and gravitation, Vol. 2, Plenum, New York-London, 1980, pp. 283–328. MR 617923
- [18] Roger Penrose and Wolfgang Rindler, Spinors and space-time. Vol. 1, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1984. Two-spinor calculus and relativistic fields. MR 776784
- [19] Robert Pool, Yang-Mills fields and extension theory, Mem. Amer. Math. Soc. 65 (1987), no. 358, iv+63. MR 874083, https://doi.org/10.1090/memo/0358
- [20] M. Roček, An introduction to superspace and supergravity, Superspace and Supergravity (Eds., S. W. Hawking and M. Roček), Cambridge Univ. Press, 1981, pp. 71-131.
- [21] R. S. Ward, On self-dual gauge fields, Phys. Lett. A 61 (1977), no. 2, 81–82. MR 443823, https://doi.org/10.1016/0375-9601(77)90842-8
- [22] R. O. Wells Jr., Complex manifolds and mathematical physics, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 2, 296–336. MR 520077, https://doi.org/10.1090/S0273-0979-1979-14596-8
- [23] -, Complex geometry in mathematical physics, Les Presses de l'Université de Montréal, 1982.
- [24] E. Witten, An interpretation of classical Yang-Mills theory, Phys. Lett. B 77 (1978), 394-398.
- [25] Brian G. Wybourne, Symmetry principles and atomic spectroscopy, Wiley-Interscience [A division of John Wiley & Sons], New York-London-Sydney, 1970. Including an appendix of tables by P. H. Butler. MR 0421392
Retrieve articles in Transactions of the American Mathematical Society with MSC: 32L25, 53C05, 53C80, 81E13
Retrieve articles in all journals with MSC: 32L25, 53C05, 53C80, 81E13
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1987-0882706-1
Article copyright:
© Copyright 1987
American Mathematical Society