On the Möbius function
Author:
Helmut Maier
Journal:
Trans. Amer. Math. Soc. 301 (1987), 649-664
MSC:
Primary 11N37; Secondary 11B05, 11K65, 11N45
DOI:
https://doi.org/10.1090/S0002-9947-1987-0882708-5
MathSciNet review:
882708
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We investigate incomplete convolutions of the Möbius function of the form . It is shown that for almost all integers
one can find
for which this sum is large.
- [1] P. Erdős and R. R. Hall, On the Möbius function, J. Reine Angew. Math. 315 (1980), 121–126. MR 564529
- [2] P. Erdős and I. Kátai, Non complete sums of multiplicative functions, Period. Math. Hungar. 1 (1971), no. 3, 209–212. MR 289434, https://doi.org/10.1007/BF02029145
- [3] P. Erdős and G. Tenenbaum, Sur les diviseurs consécutifs d’un entier, Bull. Soc. Math. France 111 (1983), no. 2, 125–145 (French, with English summary). MR 734216
- [4] H. Halberstam and H.-E. Richert, On a result of R. R. Hall, J. Number Theory 11 (1979), no. 1, 76–89. MR 527762, https://doi.org/10.1016/0022-314X(79)90021-0
- [5] R. R. Hall, A problem of Erdős and Kátai, Mathematika 21 (1974), 110–113. MR 366842, https://doi.org/10.1112/S0025579300005854
- [6] R. R. Hall, Sums of imaginary powers of the divisors of integers, J. London Math. Soc. (2) 9 (1974/75), 571–580. MR 364131, https://doi.org/10.1112/jlms/s2-9.4.571
- [7] C. Hooley, On a new technique and its applications to the theory of numbers, Proc. London Math. Soc. (3) 38 (1979), no. 1, 115–151. MR 520975, https://doi.org/10.1112/plms/s3-38.1.115
- [8] H. Maier and G. Tenenbaum, On the set of divisors of an integer, Invent. Math. 76 (1984), no. 1, 121–128. MR 739628, https://doi.org/10.1007/BF01388495
- [9] H. Maier and G. Tenenbaum, On the normal concentration of divisors, J. London Math. Soc. (2) 31 (1985), no. 3, 393–400. MR 812767, https://doi.org/10.1112/jlms/s2-31.3.393
- [10] G. Tenenbaum, Sur la probabilité qu’un entier possède un diviseur dans un intervalle donné, Compositio Math. 51 (1984), no. 2, 243–263 (French). MR 739737
Retrieve articles in Transactions of the American Mathematical Society with MSC: 11N37, 11B05, 11K65, 11N45
Retrieve articles in all journals with MSC: 11N37, 11B05, 11K65, 11N45
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1987-0882708-5
Article copyright:
© Copyright 1987
American Mathematical Society