Pseudo-Chern classes of an almost pseudo-Hermitian manifold
HTML articles powered by AMS MathViewer
- by Yasuo Matsushita
- Trans. Amer. Math. Soc. 301 (1987), 665-677
- DOI: https://doi.org/10.1090/S0002-9947-1987-0882709-7
- PDF | Request permission
Abstract:
For an almost pseudo-Hermitian manifold, pseudo-Chern classes are defined on its complexified tangent bundle with the pseudo-Hermitian structure as represented by certain ${\text {ad}}(U(p, q))$-invariant forms on the manifold. It is shown that such a manifold always admits an almost Hermitian structure, and hence that Chern classes are also defined on the complexified tangent bundle with such an almost Hermitian structure. A relation between the pseudo-Chern classes and the Chern classes is established. From the relation, the pseudo-Chern classes are considered as the characteristic classes which measure how the almost pseudo-Hermitian structure deviates from an almost Hermitian structure.References
- André Avez, Formule de Gauss-Bonnet-Chern en métrique de signature quelconque, C. R. Acad. Sci. Paris 255 (1962), 2049–2051 (French). MR 145462
- Armand Borel, Sur une généralisation de la formule de Gauss-Bonnet, An. Acad. Brasil. Ci. 39 (1967), 31–37 (French). MR 222816
- Shiing-shen Chern, Pseudo-Riemannian geometry and the Gauss-Bonnet formula, An. Acad. Brasil. Ci. 35 (1963), 17–26. MR 155261
- Alfred Gray, Nearly Kähler manifolds, J. Differential Geometry 4 (1970), 283–309. MR 267502
- Friedrich Hirzebruch and Heinz Hopf, Felder von Flächenelementen in 4-dimensionalen Mannigfaltigkeiten, Math. Ann. 136 (1958), 156–172 (German). MR 100844, DOI 10.1007/BF01362296
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0238225
- Yasuo Matsushita, Pseudo-Pontrjagin classes, Proc. Amer. Math. Soc. 93 (1985), no. 3, 521–524. MR 774016, DOI 10.1090/S0002-9939-1985-0774016-1
- Yasuo Matsushita, On Euler characteristics of compact Einstein $4$-manifolds of metric signature $(++–)$, J. Math. Phys. 22 (1981), no. 5, 979–982. MR 622847, DOI 10.1063/1.525018
- Yasuo Matsushita, Thorpe-Hitchin inequality for compact Einstein $4$-manifolds of metric signature $(++–)$ and the generalized Hirzebruch index formula, J. Math. Phys. 24 (1983), no. 1, 36–40. MR 690367, DOI 10.1063/1.525599
- John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR 0440554
- Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258
- Wen-Tsun Wu, Sur la structure presque complexe d’une variété différentiable réelle de dimension 4, C. R. Acad. Sci. Paris 227 (1948), 1076–1078 (French). MR 27515
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 301 (1987), 665-677
- MSC: Primary 53C55; Secondary 53C50, 57R20
- DOI: https://doi.org/10.1090/S0002-9947-1987-0882709-7
- MathSciNet review: 882709