Quadratic geometry of numbers
HTML articles powered by AMS MathViewer
- by Hans Peter Schlickewei and Wolfgang M. Schmidt
- Trans. Amer. Math. Soc. 301 (1987), 679-690
- DOI: https://doi.org/10.1090/S0002-9947-1987-0882710-3
- PDF | Request permission
Abstract:
We give upper bounds for zeros of quadratic forms. For example we prove that for any nondegenerate quadratic form $\mathfrak {F}({x_1}, \ldots , {x_n})$ with rational integer coefficients which vanishes on a $d$-dimensional rational subspace $(d > 0)$ there exist sublattices ${\Gamma _0}, {\Gamma _1}, \ldots ,{\Gamma _{n - d}}$ of ${\mathbf {Z}^n}$ of rank $d$, on which $\mathfrak {F}$ vanishes, with the following properties: \[ {\text {rank}}({\Gamma _0} \cap {\Gamma _i}) = d - 1,\quad {\text {rank}}({\Gamma _0} \cup {\Gamma _1} \cup \cdots \cup {\Gamma _{n - d}}) = n\] and \[ {(\det {\Gamma _0})^{n - d}}\det {\Gamma _1} \cdots \det {\Gamma _{n - d}} \ll {F^{{{(n - d)}^2}}}\], where $F$ is the maximum modulus of the coefficients of $\mathfrak {F}$.References
- B. J. Birch and H. Davenport, Quadratic equations in several variables, Proc. Cambridge Philos. Soc. 54 (1958), 135–138. MR 97355, DOI 10.1017/s0305004100033296
- J. W. S. Cassels, Bounds for the least solutions of homogeneous quadratic equations, Proc. Cambridge Philos. Soc. 51 (1955), 262–264. MR 69217, DOI 10.1017/s0305004100030188
- J. W. S. Cassels, Addendum to the paper “Bounds for the least solutions of homogeneous quadratic equations”, Proc. Cambridge Philos. Soc. 52 (1956), 602. MR 81306, DOI 10.1017/s0305004100031625
- H. Davenport, Homogeneous quadratic equations, Mathematika 18 (1971), 1–4. Prepared for publication by D. J. Lewis. MR 292760, DOI 10.1112/S0025579300008305
- Hans Peter Schlickewei, Kleine Nullstellen homogener quadratischer Gleichungen, Monatsh. Math. 100 (1985), no. 1, 35–45 (German, with English summary). MR 807296, DOI 10.1007/BF01383715
- Rainer Schulz-Pillot, Small linearly independent zeros of quadratic forms, Monatsh. Math. 95 (1983), no. 3, 291–249. MR 712424, DOI 10.1007/BF01352003
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 301 (1987), 679-690
- MSC: Primary 11H55
- DOI: https://doi.org/10.1090/S0002-9947-1987-0882710-3
- MathSciNet review: 882710