Special functions of matrix argument. I. Algebraic induction, zonal polynomials, and hypergeometric functions
HTML articles powered by AMS MathViewer
- by Kenneth I. Gross and Donald St. P. Richards
- Trans. Amer. Math. Soc. 301 (1987), 781-811
- DOI: https://doi.org/10.1090/S0002-9947-1987-0882715-2
- PDF | Request permission
Abstract:
Hypergeometric functions of matrix argument arise in a diverse range of applications in harmonic analysis, multivariate statistics, quantum physics, molecular chemistry, and number theory. This paper presents a general theory of such functions for real division algebras. These functions, which generalize the classical hypergeometric functions, are defined by infinite series on the space $S = S(n, \mathbf {F})$ of all $n \times n$ Hermitian matrices over the division algebra $\mathbf {F}$. The theory depends intrinsically upon the representation theory of the general linear group $G = GL(n, \mathbf {F})$ of invertible $n \times n$ matrices over $\mathbf {F}$, and the theme of this work is the full exploitation of the inherent group theory. The main technique is the use of the method of “algebraic induction” to realize explicitly the appropriate representations of $G$, to decompose the space of polynomial functions on $S$, and to describe the “zonal polynomials” from which the hypergeometric functions are constructed. Detailed descriptions of the convergence properties of the series expansions are given, and integral representations are provided. Future papers in this series will develop the fine structure of these functions.References
- S. Bochner, Bessel functions and modular relations of higher type and hyperbolic differential equations, Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (1952), no. Tome Supplémentaire, 12–20. MR 58774
- A. G. Constantine, Some non-central distribution problems in multivariate analysis, Ann. Math. Statist. 34 (1963), 1270–1285. MR 181056, DOI 10.1214/aoms/1177703863
- Jiri Dadok and Victor Kac, Polar representations, J. Algebra 92 (1985), no. 2, 504–524. MR 778464, DOI 10.1016/0021-8693(85)90136-X B. E. Eichinger, An approach to distribution functions for Gaussian molecules, Macromolecules 10 (1977), 671-675.
- Roger Godement, A theory of spherical functions. I, Trans. Amer. Math. Soc. 73 (1952), 496–556. MR 52444, DOI 10.1090/S0002-9947-1952-0052444-2
- S. G. Gindikin, Analysis in homogeneous domains, Uspehi Mat. Nauk 19 (1964), no. 4 (118), 3–92 (Russian). MR 0171941
- K. I. Gross and R. A. Kunze, Fourier decompositions of certain representations, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970), Pure and Appl. Math., Vol. 8, Dekker, New York, 1972, pp. 119–139. MR 0427541
- Kenneth I. Gross and Ray A. Kunze, Bessel functions and representation theory. I, J. Functional Analysis 22 (1976), no. 2, 73–105. MR 0415214, DOI 10.1016/0022-1236(76)90015-x
- Kenneth I. Gross and Ray A. Kunze, Bessel functions and representation theory. II. Holomorphic discrete series and metaplectic representations, J. Functional Analysis 25 (1977), no. 1, 1–49. MR 0453928, DOI 10.1016/0022-1236(77)90030-1
- Kenneth I. Gross and Ray A. Kunze, Finite-dimensional induction and new results on invariants for classical groups. I, Amer. J. Math. 106 (1984), no. 4, 893–974. MR 749261, DOI 10.2307/2374328
- Kenneth I. Gross and Ray A. Kunze, Finite-dimensional induction. II. General reciprocity theorems, J. Reine Angew. Math. 369 (1986), 14–20. MR 850626 K. I. Gross and D. St. P. Richards, Special functions of matrix argument. II (in preparation).
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR 754767
- Carl S. Herz, Bessel functions of matrix argument, Ann. of Math. (2) 61 (1955), 474–523. MR 69960, DOI 10.2307/1969810
- Wayne J. Holman III, Generalized Bessel functions and the representation theory of $\textrm {U}(2)\sigma \mathbf C^{2\times 2}$, J. Math. Phys. 21 (1980), no. 8, 1977–2010. MR 579194, DOI 10.1063/1.524708
- Lars Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0203075
- L. K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, American Mathematical Society, Providence, R.I., 1963. Translated from the Russian by Leo Ebner and Adam Korányi. MR 0171936, DOI 10.1090/mmono/006
- Alan T. James, Distributions of matrix variates and latent roots derived from normal samples, Ann. Math. Statist. 35 (1964), 475–501. MR 181057, DOI 10.1214/aoms/1177703550
- Kenneth D. Johnson, On a ring of invariant polynomials on a Hermitian symmetric space, J. Algebra 67 (1980), no. 1, 72–81. MR 595020, DOI 10.1016/0021-8693(80)90308-7
- B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753–809. MR 311837, DOI 10.2307/2373470
- J. D. Louck and L. C. Biedenharn, A generalization of the Gauss hypergeometric series, J. Math. Anal. Appl. 59 (1977), no. 3, 423–431. MR 435465, DOI 10.1016/0022-247X(77)90070-1
- Robb J. Muirhead, Aspects of multivariate statistical theory, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1982. MR 652932, DOI 10.1002/9780470316559 D. Richards, Solution to problem 84-1: An integral on $\mathcal {SO}(3)$, SIAM Rev. 27 (1985), 81-82.
- Wilfried Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math. 9 (1969/70), 61–80 (German). MR 259164, DOI 10.1007/BF01389889
- A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87. MR 88511
- Goro Shimura, Confluent hypergeometric functions on tube domains, Math. Ann. 260 (1982), no. 3, 269–302. MR 669297, DOI 10.1007/BF01461465
- Carl Ludwig Siegel, Über die analytische Theorie der quadratischen Formen, Ann. of Math. (2) 36 (1935), no. 3, 527–606 (German). MR 1503238, DOI 10.2307/1968644
- Akimichi Takemura, Zonal polynomials, Institute of Mathematical Statistics Lecture Notes—Monograph Series, vol. 4, Institute of Mathematical Statistics, Hayward, CA, 1984. MR 744672
- Masaru Takeuchi, Polynomial representations associated with symmetric bounded domains, Osaka Math. J. 10 (1973), 441–475. MR 412493
- Audrey Terras, Special functions for the symmetric space of positive matrices, SIAM J. Math. Anal. 16 (1985), no. 3, 620–640. MR 783986, DOI 10.1137/0516046
- Audrey Terras, Harmonic analysis on symmetric spaces and applications. I, Springer-Verlag, New York, 1985. MR 791406, DOI 10.1007/978-1-4612-5128-6
- Tuong Ton That, Lie group representations and harmonic polynomials of a matrix variable, Trans. Amer. Math. Soc. 216 (1976), 1–46. MR 399366, DOI 10.1090/S0002-9947-1976-0399366-1
- Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 301 (1987), 781-811
- MSC: Primary 22E30; Secondary 22E45, 33A75, 43A85, 62H10
- DOI: https://doi.org/10.1090/S0002-9947-1987-0882715-2
- MathSciNet review: 882715