On certain $3$-generator Artin groups
HTML articles powered by AMS MathViewer
- by Craig C. Squier
- Trans. Amer. Math. Soc. 302 (1987), 117-124
- DOI: https://doi.org/10.1090/S0002-9947-1987-0887500-3
- PDF | Request permission
Abstract:
We describe the three $3$-generator Artin groups that correspond to the three sets $\{ p,q,r\}$ of positive integer solutions of ${p^{ - 1}} + {q^{ - 1}} + {r^{ - 1}} = 1$. In each case, we show that the Artin group is a free product with amalgamation or HNN extension involving finitely generated free groups and subgroups of finite index.References
- Muhammad Albar and D. L. Johnson, Circular braids, Arab Gulf J. Sci. Res. 2 (1984), no. 1, 137–145 (English, with Arabic summary). MR 762300
- Kenneth I. Appel, On Artin groups and Coxeter groups of large type, Contributions to group theory, Contemp. Math., vol. 33, Amer. Math. Soc., Providence, RI, 1984, pp. 50–78. MR 767099, DOI 10.1090/conm/033/767099
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- Egbert Brieskorn and Kyoji Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972), 245–271 (German). MR 323910, DOI 10.1007/BF01406235
- Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89, Springer-Verlag, Berlin-New York, 1977. MR 0577064
- Jean-Pierre Serre, Trees, Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell. MR 607504
- John R. Stallings, On torsion-free groups with infinitely many ends, Ann. of Math. (2) 88 (1968), 312–334. MR 228573, DOI 10.2307/1970577
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 302 (1987), 117-124
- MSC: Primary 20F05; Secondary 20E06, 20F36
- DOI: https://doi.org/10.1090/S0002-9947-1987-0887500-3
- MathSciNet review: 887500