Periodic points and automorphisms of the shift
HTML articles powered by AMS MathViewer
- by Mike Boyle and Wolfgang Krieger
- Trans. Amer. Math. Soc. 302 (1987), 125-149
- DOI: https://doi.org/10.1090/S0002-9947-1987-0887501-5
- PDF | Request permission
Abstract:
The automorphism group of a topological Markov shift is studied by way of periodic points and unstable sets. A new invariant for automorphisms of dynamical systems, the gyration function, is used to characterize those automorphisms of finite subsystems of the full shift on $n$ symbols which can be extended to a composition of involutions of the shift. It is found that for any automorphism $U$ of a subshift of finite type $S$, for all large integers $M$ the map $U{S^M}$ is a topological Markov shift whose unstable sets equal those of $S$. This fact yields, by way of canonical measures and dimension groups, information about dynamical properties of $U{S^k}$ such as the zeta function and entropy.References
- V. M. Alekseev, Symbolic dynamics, Eleventh Mathematical School (Summer School, Kolomyya, 1973) Izdanie Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1976, pp. 5–210 (Russian). MR 0464317
- Rufus Bowen, Topological entropy and axiom $\textrm {A}$, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 23–41. MR 0262459
- R. Bowen and O. E. Lanford III, Zeta functions of restrictions of the shift transformation, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 43–49. MR 0271401
- Manfred Denker, Christian Grillenberger, and Karl Sigmund, Ergodic theory on compact spaces, Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, Berlin-New York, 1976. MR 0457675
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903
- G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320–375. MR 259881, DOI 10.1007/BF01691062
- Wolfgang Krieger, On dimension functions and topological Markov chains, Invent. Math. 56 (1980), no. 3, 239–250. MR 561973, DOI 10.1007/BF01390047
- William Parry and Selim Tuncel, Classification problems in ergodic theory, Statistics: Textbooks and Monographs, vol. 41, Cambridge University Press, Cambridge-New York, 1982. MR 666871
- R. F. Williams, Classification of subshifts of finite type, Ann. of Math. (2) 98 (1973), 120–153; errata, ibid. (2) 99 (1974), 380–381. MR 331436, DOI 10.2307/1970908
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 302 (1987), 125-149
- MSC: Primary 54H20; Secondary 28D05, 54H15
- DOI: https://doi.org/10.1090/S0002-9947-1987-0887501-5
- MathSciNet review: 887501