Martin boundaries of random walks: ends of trees and groups
HTML articles powered by AMS MathViewer
- by Massimo A. Picardello and Wolfgang Woess
- Trans. Amer. Math. Soc. 302 (1987), 185-205
- DOI: https://doi.org/10.1090/S0002-9947-1987-0887505-2
- PDF | Request permission
Abstract:
Consider a transient random walk ${X_n}$ on an infinite tree $T$ whose nonzero transition probabilities are bounded below. Suppose that ${X_n}$ is uniformly irreducible and has bounded step-length. (Alternatively, ${X_n}$ can be regarded as a random walk on a graph whose metric is equivalent to the metric of $T$.) The Martin boundary of ${X_n}$ is shown to coincide with the space $\Omega$ of all ends of $T$ (or, equivalently, of the graph). This yields a boundary representation theorem on $\Omega$ for all positive eigenfunctions of the transition operator, and a nontangential Fatou theorem which describes their boundary behavior. These results apply, in particular, to finitely supported random walks on groups whose Cayley graphs admit a uniformly spanning tree. A class of groups of this type is constructed.References
- R. Azencott and P. Cartier, Martin boundaries of random walks on locally compact groups, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 87–129. MR 0408008
- Garrett Birkhoff, Extensions of Jentzsch’s theorem, Trans. Amer. Math. Soc. 85 (1957), 219–227. MR 87058, DOI 10.1090/S0002-9947-1957-0087058-6
- Herbert Busemann and Paul J. Kelly, Projective geometry and projective metrics, Academic Press, Inc., New York, N.Y., 1953. MR 0054980
- P. Cartier, Fonctions harmoniques sur un arbre, Symposia Mathematica, Vol. IX (Convegno di Calcolo delle Probabilità & Convegno di Teoria della Turbolenza, INDAM, Rome, 1971) Academic Press, London, 1972, pp. 203–270 (French). MR 0353467
- Yves Derriennic, Marche aléatoire sur le groupe libre et frontière de Martin, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 32 (1975), no. 4, 261–276 (French). MR 388545, DOI 10.1007/BF00535840 E. B. Dynkin and M. B. Malyutov, Random walks on groups with a finite number of generators, Soviet Math. Dokl. 2 (1961), 399-402.
- Hans Freudenthal, Über die Enden diskreter Räume und Gruppen, Comment. Math. Helv. 17 (1945), 1–38 (German). MR 12214, DOI 10.1007/BF02566233
- Harry Furstenberg, Random walks and discrete subgroups of Lie groups, Advances in Probability and Related Topics, Vol. 1, Dekker, New York, 1971, pp. 1–63. MR 0284569
- Peter Gerl and Wolfgang Woess, Simple random walks on trees, European J. Combin. 7 (1986), no. 4, 321–331. MR 868551, DOI 10.1016/S0195-6698(86)80005-1
- V. A. Kaĭmanovich and A. M. Vershik, Random walks on discrete groups: boundary and entropy, Ann. Probab. 11 (1983), no. 3, 457–490. MR 704539
- John G. Kemeny, J. Laurie Snell, and Anthony W. Knapp, Denumerable Markov chains, 2nd ed., Graduate Texts in Mathematics, No. 40, Springer-Verlag, New York-Heidelberg-Berlin, 1976. With a chapter on Markov random fields, by David Griffeath. MR 0407981
- Harry Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959), 336–354. MR 109367, DOI 10.1090/S0002-9947-1959-0109367-6
- Harry Kesten, Full Banach mean values on countable groups, Math. Scand. 7 (1959), 146–156. MR 112053, DOI 10.7146/math.scand.a-10568
- H. Kesten, The Martin boundary of recurrent random walks on countable groups, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 51–74. MR 0214137 A. Korányi and M. A. Picardello, Boundary behavior of eigenfunctions of the Laplace operator on trees, Ann. Scuola Norm. Sup. Pisa (to appear).
- Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89, Springer-Verlag, Berlin-New York, 1977. MR 0577064
- D. Revuz, Markov chains, 2nd ed., North-Holland Mathematical Library, vol. 11, North-Holland Publishing Co., Amsterdam, 1984. MR 758799
- E. Seneta, Non-negative matrices and Markov chains, Springer Series in Statistics, Springer, New York, 2006. Revised reprint of the second (1981) edition [Springer-Verlag, New York; MR0719544]. MR 2209438
- Caroline Series, Martin boundaries of random walks on Fuchsian groups, Israel J. Math. 44 (1983), no. 3, 221–242. MR 693661, DOI 10.1007/BF02760973
- John Stallings, Group theory and three-dimensional manifolds, Yale Mathematical Monographs, vol. 4, Yale University Press, New Haven, Conn.-London, 1971. A James K. Whittemore Lecture in Mathematics given at Yale University, 1969. MR 0415622
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 302 (1987), 185-205
- MSC: Primary 60J50; Secondary 05C05, 20F32, 60B15, 60J10
- DOI: https://doi.org/10.1090/S0002-9947-1987-0887505-2
- MathSciNet review: 887505