The set of continuous functions with everywhere convergent Fourier series
HTML articles powered by AMS MathViewer
- by M. Ajtai and A. S. Kechris
- Trans. Amer. Math. Soc. 302 (1987), 207-221
- DOI: https://doi.org/10.1090/S0002-9947-1987-0887506-4
- PDF | Request permission
Abstract:
This paper deals with the descriptive set theoretic properties of the class $\operatorname {EC}$ of continuous functions with everywhere convergent Fourier series. It is shown that this set is a complete coanalytic set in $C(T)$. A natural coanalytic rank function on $\operatorname {EC}$ is studied that assigns to each $f \in \operatorname {EC}$ a countable ordinal number, which measures the "complexity" of the convergence of the Fourier series of $f$. It is shown that there exist functions in $\operatorname {EC}$ (in fact even differentiable ones) which have arbitrarily large countable rank, so that this provides a proper hierarchy on $\operatorname {EC}$ with ${\omega _1}$ distinct levels.References
- N. K. Bary, A treatise on trigonometric series. Vols. I, II, A Pergamon Press Book, The Macmillan Company, New York, 1964. Authorized translation by Margaret F. Mullins. MR 0171116
- Andrew M. Bruckner, Differentiation of real functions, Lecture Notes in Mathematics, vol. 659, Springer, Berlin, 1978. MR 507448
- V. V. Buzdalin, Unboundedly diverging trigonometric Fourier series of continuous functions, Mat. Zametki 7 (1970), 7–18 (Russian). MR 262757 —, Trigonometric Fourier series of continuous functions diverging on a given set, Math. USSR Sbornik 24 (1974), no. 1, 79-101. (English translation of Mat. Sb. 95(137) (1974), no. 1)
- Lennart Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135–157. MR 199631, DOI 10.1007/BF02392815
- Paul Erdös, Fritz Herzog, and George Piranian, Sets of divergence of Taylor series and of trigonometric series, Math. Scand. 2 (1954), 262–266. MR 67224, DOI 10.7146/math.scand.a-10413
- D. C. Gillespie and W. A. Hurwitz, On sequences of continuous functions having continuous limits, Trans. Amer. Math. Soc. 32 (1930), no. 3, 527–543. MR 1501551, DOI 10.1090/S0002-9947-1930-1501551-9
- Yitzhak Katznelson, An introduction to harmonic analysis, Second corrected edition, Dover Publications, Inc., New York, 1976. MR 0422992
- Alexander S. Kechris, Sets of everywhere singular functions, Recursion theory week (Oberwolfach, 1984) Lecture Notes in Math., vol. 1141, Springer, Berlin, 1985, pp. 233–244. MR 820783, DOI 10.1007/BFb0076223
- Alexander S. Kechris and W. Hugh Woodin, Ranks of differentiable functions, Mathematika 33 (1986), no. 2, 252–278 (1987). MR 882498, DOI 10.1112/S0025579300011244 K. Kuratowski, Evaluation de la classe borélienne ou projective d’un ensemble de points a i’aide des symboles logiques, Fund. Math. 17 (1931), 249-272.
- Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 561709
- R. Daniel Mauldin, The set of continuous nowhere differentiable functions, Pacific J. Math. 83 (1979), no. 1, 199–205. MR 555048 S. Mazurkiewicz, Über die Menge der differenzierbaven Functionen, Fund. Math. 27 (1936), 244-249..
- Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
- J. Śladkowska, Sur l’ensemble des points de divergence des séries de Fourier des fonctions continues, Fund. Math. 49 (1960/61), 271–294 (French). MR 125397, DOI 10.4064/fm-49-3-271-294
- Karl R. Stromberg, Introduction to classical real analysis, Wadsworth International Mathematics Series, Wadsworth International, Belmont, Calif., 1981. MR 604364
- W. Szlenk, The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces, Studia Math. 30 (1968), 53–61. MR 227743, DOI 10.4064/sm-30-1-53-61 A. Zalcwasser, Sur une proprieté du champes des fonctions continus, Studia Math. 2 (1930), 63-67.
- Karl Zeller, Über Konvergenzmengen von Fourierreihen, Arch. Math. 6 (1955), 335–340 (German). MR 69302, DOI 10.1007/BF01899414
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 302 (1987), 207-221
- MSC: Primary 04A15; Secondary 26A21, 42A20
- DOI: https://doi.org/10.1090/S0002-9947-1987-0887506-4
- MathSciNet review: 887506