Small zeros of quadratic forms over number fields
HTML articles powered by AMS MathViewer
- by Jeffrey D. Vaaler
- Trans. Amer. Math. Soc. 302 (1987), 281-296
- DOI: https://doi.org/10.1090/S0002-9947-1987-0887510-6
- PDF | Request permission
Abstract:
Let $F$ be a nontrivial quadratic form in $N$ variables with coefficients in a number field $k$ and let $A$ be a $K \times N$ matrix over $k$. We show that if the simultaneous equations $F({\mathbf {x}}) = 0$ and $A{\mathbf {x}} = 0$ hold on a subspace $\mathfrak {X}$ of dimension $L$ and $L$ is maximal, then such a subspace $\mathfrak {X}$ can be found with the height of $\mathfrak {X}$ relatively small. In particular, the height of $\mathfrak {X}$ can be explicitly bounded by an expression depending on the height of $F$ and the height of $A$. We use methods from geometry of numbers over adèle spaces and local to global techniques which generalize recent work of H. P. Schlickewei.References
- B. J. Birch and H. Davenport, Quadratic equations in several variables, Proc. Cambridge Philos. Soc. 54 (1958), 135–138. MR 97355, DOI 10.1017/s0305004100033296
- E. Bombieri and J. Vaaler, On Siegel’s lemma, Invent. Math. 73 (1983), no. 1, 11–32. MR 707346, DOI 10.1007/BF01393823
- J. W. S. Cassels, Bounds for the least solutions of homogeneous quadratic equations, Proc. Cambridge Philos. Soc. 51 (1955), 262–264. MR 69217, DOI 10.1017/s0305004100030188
- J. H. H. Chalk, Linearly independent zeros of quadratic forms over number fields, Monatsh. Math. 90 (1980), no. 1, 13–25. MR 593828, DOI 10.1007/BF01641708 P. Gordan, Über den grössten gemeinsamen Factor, Math. Ann. 7 (1873), 443-448. W. V. D. Hodge and D. Pedoe, Methods of algebraic geometry, vol. 1, Cambridge Univ. Press, 1968.
- S. Raghavan, Bounds for minimal solutions of Diophantine equations, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 9 (1975), 109–114. MR 485681
- Hans Peter Schlickewei, Kleine Nullstellen homogener quadratischer Gleichungen, Monatsh. Math. 100 (1985), no. 1, 35–45 (German, with English summary). MR 807296, DOI 10.1007/BF01383715
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 302 (1987), 281-296
- MSC: Primary 11E12
- DOI: https://doi.org/10.1090/S0002-9947-1987-0887510-6
- MathSciNet review: 887510