## Stationary configurations of point vortices

HTML articles powered by AMS MathViewer

- by Kevin Anthony O’Neil PDF
- Trans. Amer. Math. Soc.
**302**(1987), 383-425 Request permission

## Abstract:

The motion of point vortices in a plane of fluid is an old problem of fluid mechanics, which was given a Hamiltonian formulation by Kirchhoff. Stationary configurations are those which remain self-similar throughout the motion. Results of two types are presented. Configurations which are in equilibrium or which translate uniformly are counted using methods of algebraic geometry, which establish necessary and sufficient conditions for existence. Relative equilibria (rigidly rotating configurations) which lie on a line are studied using a topological construction applicable to other power-law systems. Upper and lower bounds for such configurations are found for vortices with mixed circulations. Arrangements of three vortices which collide in finite time are well known. One-dimensional families of such configurations are shown to exist for more than three vortices. Stationary configurations of four vortices are examined in detail.## References

- Hassan Aref,
*Integrable, chaotic, and turbulent vortex motion in two-dimensional flows*, Annual review of fluid mechanics, Vol. 15, Annual Reviews, Palo Alto, Calif., 1983, pp. 345–389. MR**686292**
—( - H. Aref and N. Pomphrey,
*Integrable and chaotic motions of four vortices. I. The case of identical vortices*, Proc. Roy. Soc. London Ser. A**380**(1982), no. 1779, 359–387. MR**660416**, DOI 10.1098/rspa.1982.0047 - G. K. Batchelor,
*An introduction to fluid dynamics*, Second paperback edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1999. MR**1744638**
O. Friedrichs ( - Phillip Griffiths and Joseph Harris,
*Principles of algebraic geometry*, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR**507725**
Gràbli ( - Nathan Jacobson,
*Basic algebra. I*, W. H. Freeman and Co., San Francisco, Calif., 1974. MR**0356989**
Lord Kelvin ( - Julian I. Palmore,
*Relative equilibria of vortices in two dimensions*, Proc. Nat. Acad. Sci. U.S.A.**79**(1982), no. 2, 716–718. MR**648066**, DOI 10.1073/pnas.79.2.716 - I. R. Shafarevich,
*Basic algebraic geometry*, Springer Study Edition, Springer-Verlag, Berlin-New York, 1977. Translated from the Russian by K. A. Hirsch; Revised printing of Grundlehren der mathematischen Wissenschaften, Vol. 213, 1974. MR**0447223**
Sommerfeld ( - J. L. Synge,
*On the motion of three vortices*, Canad. J. Math.**1**(1949), 257–270. MR**30841**, DOI 10.4153/cjm-1949-022-2
J. Thomson (

**1979**),

*Motion of three vortices*, Phys. Fluids

**22**, 393-400.

**1966**),

*Special topics in fluid dynamics*, Chapter 19, Gordon and Breach, New York.

**1877**),

*Specielle Probleme uber die Bewegung geradliniger paralleler Wirbelfaden*(Zurich: Zurcher und Furrer). H. Havelock (

**1931**),

*The stability of motion of rectilinear vortices in ring formation*, Philos. Mag.

**11**, 617-633. Helmholtz (

**1858**),

*On integrals of the hydrodynamical equations which express vortex motion*, Philos. Mag.,

**33**, 485-512.

**1910**),

*Mathematical and physical papers*, Vol. IV, Nos. 10, 12, Cambridge Univ. Press, Cambridge, England. R. Kirchhoff (

**1876**),

*Vorlesungen uber Matematische Physik*, Vol. I, Teubner, Leipzig. Lamb (

**1932**),

*Hydrodynamics*, Chapter VII, Dover, New York. A. Novikov (

**1975**),

*Dynamics and statistics of a system of vortices*, Soviet Phys.-JETP

**41**, 937-943. A. Novikov and Yu. B. Sedov (

**1979**),

*Vortex collapse*, Sov. Phys.-JETP,

**50**, 297-301.

**1964**),

*Mechanics of deformable bodies*, Chapter IV, Academic Press, New York.

**1883**),

*A treatise on the motion of vortex rings*, Macmillan, London.

## Additional Information

- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**302**(1987), 383-425 - MSC: Primary 76C05; Secondary 58F05, 58F40
- DOI: https://doi.org/10.1090/S0002-9947-1987-0891628-1
- MathSciNet review: 891628