## The Fraser-Horn and Apple properties

HTML articles powered by AMS MathViewer

- by Joel Berman and W. J. Blok PDF
- Trans. Amer. Math. Soc.
**302**(1987), 427-465 Request permission

## Abstract:

We consider varieties $\mathcal {V}$ in which finite direct products are skew-free and in which the congruence lattices of finite directly indecomposables have a unique coatom. We associate with $\mathcal {V}$ a family of derived varieties, $d(\mathcal {V})$: a variety in $d(\mathcal {V})$ is generated by algebras ${\mathbf {A}}$ where the universe of ${\mathbf {A}}$ consists of a congruence class of the coatomic congruence of a finite directly indecomposable algebra ${\mathbf {B}} \in \mathcal {V}$ and the operations of ${\mathbf {A}}$ are those of ${\mathbf {B}}$ that preserve this congruence class. We also consider the prime variety of $\mathcal {V}$, denoted ${\mathcal {V}_0}$, generated by all finite simple algebras in $\mathcal {V}$. We show how the structure of finite algebras in $\mathcal {V}$ is determined to a considerable extent by ${\mathcal {V}_0}$ and $d(\mathcal {V})$. In particular, the free $\mathcal {V}$-algebra on $n$ generators, ${{\mathbf {F}}_\mathcal {V}}(n)$, has as many directly indecomposable factors as ${{\mathbf {F}}_{{\mathcal {V}_0}}}(n)$ and the structure of these factors is determined by the varieties $d(\mathcal {V})$. This allows us to produce in many cases explicit formulas for the cardinality of ${{\mathbf {F}}_\mathcal {V}}(n)$. Our work generalizes the structure theory of discriminator varieties and, more generally, that of arithmetical semisimple varieties. The paper contains many examples of algebraic systems that have been investigated in different contexts; we show how these all fit into a general scheme.## References

- Raymond Balbes and Philip Dwinger,
*Distributive lattices*, University of Missouri Press, Columbia, Mo., 1974. MR**0373985** - Raymond Balbes and Alfred Horn,
*Stone lattices*, Duke Math. J.**37**(1970), 537–545. MR**277448** - Joel Berman,
*Free spectra of $3$-element algebras*, Universal algebra and lattice theory (Puebla, 1982) Lecture Notes in Math., vol. 1004, Springer, Berlin, 1983, pp. 10–53. MR**716173**, DOI 10.1007/BFb0063428
J. Blok [1976], - W. J. Blok and W. Dziobiak,
*On the lattice of quasivarieties of Sugihara algebras*, Studia Logica**45**(1986), no. 3, 275–280. MR**877316**, DOI 10.1007/BF00375898 - W. J. Blok, P. Köhler, and D. Pigozzi,
*On the structure of varieties with equationally definable principal congruences. II*, Algebra Universalis**18**(1984), no. 3, 334–379. MR**745497**, DOI 10.1007/BF01203370 - Bruno Bosbach,
*Komplementäre Halbgruppen: Axiomatik und Arithmetik*, Fund. Math.**64**(1969), 257–287 (German). MR**260902**, DOI 10.4064/fm-64-3-257-287
Burris [1982], - S. Burris and J. Lawrence,
*A correction to: “Definable principal congruences in varieties of groups and rings” [Algebra Universalis 9 (1979), no. 2, 152–164; MR 80c:08004]*, Algebra Universalis**13**(1981), no. 2, 264–267. MR**631561**, DOI 10.1007/BF02483839 - Stanley Burris and H. P. Sankappanavar,
*A course in universal algebra*, Graduate Texts in Mathematics, vol. 78, Springer-Verlag, New York-Berlin, 1981. MR**648287** - W. H. Cornish,
*Antimorphic action*, Research and Exposition in Mathematics, vol. 12, Heldermann Verlag, Berlin, 1986. Categories of algebraic structures with involutions or anti-endomorphisms. MR**879742** - Brian A. Davey,
*Weak injectivity and congruence extension in congruence-distributive equational classes*, Canadian J. Math.**29**(1977), no. 3, 449–459. MR**441823**, DOI 10.4153/CJM-1977-048-1 - J. Demetrovics, L. Hannák, and L. Rónyai,
*On the free spectra of maximal clones*, C. R. Math. Rep. Acad. Sci. Canada**4**(1982), no. 6, 363–366. MR**681194** - J. Michael Dunn,
*Algebraic completeness results for $R$-mingle and its extensions*, J. Symbolic Logic**35**(1970), 1–13. MR**288008**, DOI 10.2307/2271149 - Alfred L. Foster and Alden F. Pixley,
*Semi-categorical algebras. II*, Math. Z.**85**(1964), 169–184. MR**168509**, DOI 10.1007/BF01110374 - Grant A. Fraser and Alfred Horn,
*Congruence relations in direct products*, Proc. Amer. Math. Soc.**26**(1970), 390–394. MR**265258**, DOI 10.1090/S0002-9939-1970-0265258-1 - Ralph Freese and J. B. Nation,
*Congruence lattices of semilattices*, Pacific J. Math.**49**(1973), 51–58. MR**332590** - George Grätzer,
*Universal algebra*, 2nd ed., Springer-Verlag, New York-Heidelberg, 1979. MR**538623** - G. Grätzer and E. T. Schmidt,
*On a problem of M. H. Stone*, Acta Math. Acad. Sci. Hungar.**8**(1957), 455–460. MR**92763**, DOI 10.1007/BF02020328 - Alfred Horn,
*Free $L$-algebras*, J. Symbolic Logic**34**(1969), 475–480. MR**253886**, DOI 10.2307/2270910
K. Hu [1970], - Bjarni Jónsson,
*Algebras whose congruence lattices are distributive*, Math. Scand.**21**(1967), 110–121 (1968). MR**237402**, DOI 10.7146/math.scand.a-10850
Kàhler [1973], - Harry Lakser,
*Principal congruences in $N$-permutable varieties*, Algebra Universalis**14**(1982), no. 1, 64–67. MR**634417**, DOI 10.1007/BF02483908 - Saunders MacLane,
*Categories for the working mathematician*, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York-Berlin, 1971. MR**0354798** - Ralph McKenzie,
*Narrowness implies uniformity*, Algebra Universalis**15**(1982), no. 1, 67–85. MR**663953**, DOI 10.1007/BF02483709 - Ralph McKenzie,
*A new product of algebras and a type reduction theorem*, Algebra Universalis**18**(1984), no. 1, 29–69. MR**743456**, DOI 10.1007/BF01182247
McKenzie and D. Hobby [1986], - Alden F. Pixley,
*The ternary discriminator function in universal algebra*, Math. Ann.**191**(1971), 167–180. MR**292738**, DOI 10.1007/BF01578706 - A. F. Pixley,
*Principal congruence formulas in arithmetical varieties*, Universal algebra and lattice theory (Charleston, S.C., 1984) Lecture Notes in Math., vol. 1149, Springer, Berlin, 1985, pp. 238–254. MR**823019**, DOI 10.1007/BFb0098468 - J. Płonka,
*On free algebras and algebraic decompositions of algebras from some equational classes defined by regular equations*, Algebra Universalis**1**(1971/72), 261–264. MR**294221**, DOI 10.1007/BF02944988 - Emil L. Post,
*Introduction to a General Theory of Elementary Propositions*, Amer. J. Math.**43**(1921), no. 3, 163–185. MR**1506440**, DOI 10.2307/2370324 - Robert W. Quackenbush,
*Structure theory for equational classes generated by quasi-primal algebras*, Trans. Amer. Math. Soc.**187**(1974), 127–145. MR**327619**, DOI 10.1090/S0002-9947-1974-0327619-X - M. F. Raca,
*The class of functions of three-valued logic that corresponds to the first matrix of Jas′kovski*, Problemy Kibernet.**21**(1969), 185–214 (Russian). MR**0307880** - Walter Taylor,
*The fine spectrum of a variety*, Algebra Universalis**5**(1975), no. 2, 263–303. MR**389716**, DOI 10.1007/BF02485261 - Marek Tokarz,
*Essays in matrix semantics of relevant logics*, Polish Academy of Sciences, Institute of Philosophy and Sociology, Warsaw, 1980. MR**603277** - Heinrich Werner,
*Eine Charakterisierung funktional vollständiger Algebren*, Arch. Math. (Basel)**21**(1970), 381–385 (German). MR**269574**, DOI 10.1007/BF01220934

*Varieties of interior algebras*, Dissertation, Univ. of Amsterdam.

*Discriminator polynomials and arithmetical varieties*, manuscript.

*On equational classes of algebras in which congruences on finite products are induced by congruences on their factors*, manuscript.

*Freie endlich erzeugte Heyting Algebren*, Diplomarbeit, Justus Liebig Universität, Giessen.

*The structure of finite algebras (tame congruence theory)*, manuscript.

## Additional Information

- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**302**(1987), 427-465 - MSC: Primary 08B20; Secondary 03G25, 08A40
- DOI: https://doi.org/10.1090/S0002-9947-1987-0891629-3
- MathSciNet review: 891629