The multiplicity of isolated two-dimensional hypersurface singularities
HTML articles powered by AMS MathViewer
- by Henry B. Laufer
- Trans. Amer. Math. Soc. 302 (1987), 489-496
- DOI: https://doi.org/10.1090/S0002-9947-1987-0891631-1
- PDF | Request permission
Abstract:
Consider an isolated two-dimensional complex analytic hypersurface singularity $(V,p)$. A relation is given between the abstract topology of $(V,p)$ and the multiplicity of $(V,p)$, yielding an upper bound for the multiplicity. This relation is a necessary condition for a Gorenstein singularity to be a hypersurface.References
- Michael Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129–136. MR 199191, DOI 10.2307/2373050
- Hyman Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28. MR 153708, DOI 10.1007/BF01112819
- Hans Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331–368 (German). MR 137127, DOI 10.1007/BF01441136
- Hans Grauert and Oswald Riemenschneider, Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen, Invent. Math. 11 (1970), 263–292 (German). MR 302938, DOI 10.1007/BF01403182
- Henry B. Laufer, On minimally elliptic singularities, Amer. J. Math. 99 (1977), no. 6, 1257–1295. MR 568898, DOI 10.2307/2374025
- John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR 0239612
- Walter D. Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), no. 2, 299–344. MR 632532, DOI 10.1090/S0002-9947-1981-0632532-8
- Kyoji Saito, Einfach-elliptische Singularitäten, Invent. Math. 23 (1974), 289–325 (German). MR 354669, DOI 10.1007/BF01389749
- Jean-Pierre Serre, Groupes algébriques et corps de classes, Publications de l’Institut de Mathématique de l’Université de Nancago, VII, Hermann, Paris, 1959 (French). MR 0103191
- Philip Wagreich, Elliptic singularities of surfaces, Amer. J. Math. 92 (1970), 419–454. MR 291170, DOI 10.2307/2373333
- Stephen Shing Toung Yau, Normal singularities of surfaces, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 195–198. MR 520537
- Oscar Zariski, Some open questions in the theory of singularities, Bull. Amer. Math. Soc. 77 (1971), 481–491. MR 277533, DOI 10.1090/S0002-9904-1971-12729-5
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 302 (1987), 489-496
- MSC: Primary 32C40; Secondary 14B05, 14J17
- DOI: https://doi.org/10.1090/S0002-9947-1987-0891631-1
- MathSciNet review: 891631