## Produced representations of Lie algebras and Harish-Chandra modules

HTML articles powered by AMS MathViewer

- by Michael J. Heumos PDF
- Trans. Amer. Math. Soc.
**302**(1987), 523-534 Request permission

## Abstract:

The comultiplication of the universal enveloping algebra of a Lie algebra is used to give modules produced from a subalgebra, an additional compatible structure of a module over an algebra of formal power series. When only the $\mathfrak {k}$-finite elements of this algebra act on a module, conditions are given that insure that it is the Harish-Chandra module of a produced module. The results are then applied to Zuckerman derived functor modules for reductive Lie algebras. The main application describes a setting where the Zuckerman functors and production from a subalgebra commute.## References

- Robert J. Blattner,
*Induced and produced representations of Lie algebras*, Trans. Amer. Math. Soc.**144**(1969), 457–474. MR**308223**, DOI 10.1090/S0002-9947-1969-0308223-4 - Armand Borel and Nolan R. Wallach,
*Continuous cohomology, discrete subgroups, and representations of reductive groups*, Annals of Mathematics Studies, No. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR**554917** - Jacques Dixmier,
*Algèbres enveloppantes*, Cahiers Scientifiques, Fasc. XXXVII, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974 (French). MR**0498737** - T. J. Enright and N. R. Wallach,
*Notes on homological algebra and representations of Lie algebras*, Duke Math. J.**47**(1980), no. 1, 1–15. MR**563362** - Peter John Hilton and Urs Stammbach,
*A course in homological algebra*, Graduate Texts in Mathematics, Vol. 4, Springer-Verlag, New York-Berlin, 1971. MR**0346025** - George W. Mackey,
*Imprimitivity for representations of locally compact groups. I*, Proc. Nat. Acad. Sci. U.S.A.**35**(1949), 537–545. MR**31489**, DOI 10.1073/pnas.35.9.537
D. Vogan,

*Representations of real reductive groups*, Birkhäuser, 1981. G. Warner,

*Harmonic analysis on semisimple Lie groups*. I, Grundlehren Math. Wiss., Band 188, Spring-Verlag, Berlin and New York, 1972.

## Additional Information

- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**302**(1987), 523-534 - MSC: Primary 17B10; Secondary 17B20, 22E47
- DOI: https://doi.org/10.1090/S0002-9947-1987-0891633-5
- MathSciNet review: 891633