Produced representations of Lie algebras and Harish-Chandra modules
HTML articles powered by AMS MathViewer
- by Michael J. Heumos
- Trans. Amer. Math. Soc. 302 (1987), 523-534
- DOI: https://doi.org/10.1090/S0002-9947-1987-0891633-5
- PDF | Request permission
Abstract:
The comultiplication of the universal enveloping algebra of a Lie algebra is used to give modules produced from a subalgebra, an additional compatible structure of a module over an algebra of formal power series. When only the $\mathfrak {k}$-finite elements of this algebra act on a module, conditions are given that insure that it is the Harish-Chandra module of a produced module. The results are then applied to Zuckerman derived functor modules for reductive Lie algebras. The main application describes a setting where the Zuckerman functors and production from a subalgebra commute.References
- Robert J. Blattner, Induced and produced representations of Lie algebras, Trans. Amer. Math. Soc. 144 (1969), 457–474. MR 308223, DOI 10.1090/S0002-9947-1969-0308223-4
- Armand Borel and Nolan R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, No. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 554917
- Jacques Dixmier, Algèbres enveloppantes, Cahiers Scientifiques, Fasc. XXXVII, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974 (French). MR 0498737
- T. J. Enright and N. R. Wallach, Notes on homological algebra and representations of Lie algebras, Duke Math. J. 47 (1980), no. 1, 1–15. MR 563362
- Peter John Hilton and Urs Stammbach, A course in homological algebra, Graduate Texts in Mathematics, Vol. 4, Springer-Verlag, New York-Berlin, 1971. MR 0346025
- George W. Mackey, Imprimitivity for representations of locally compact groups. I, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 537–545. MR 31489, DOI 10.1073/pnas.35.9.537 D. Vogan, Representations of real reductive groups, Birkhäuser, 1981. G. Warner, Harmonic analysis on semisimple Lie groups. I, Grundlehren Math. Wiss., Band 188, Spring-Verlag, Berlin and New York, 1972.
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 302 (1987), 523-534
- MSC: Primary 17B10; Secondary 17B20, 22E47
- DOI: https://doi.org/10.1090/S0002-9947-1987-0891633-5
- MathSciNet review: 891633