PROOF OF A CONJECTURE OF KOSTANT

DRAGOMIR Ž. ĐOKOVIĆ

ABSTRACT. Let \(\mathfrak{g}_0 = \mathfrak{t}_0 + \mathfrak{p}_0 \) be a Cartan decomposition of a semisimple real Lie algebra and \(\mathfrak{g} = \mathfrak{t} + \mathfrak{p} \) its complexification. Denote by \(G \) the adjoint group of \(\mathfrak{g} \) and by \(G_0, K, K_0 \) the connected subgroups of \(G \) with respective Lie algebras \(\mathfrak{g}_0, \mathfrak{t}, \mathfrak{t}_0 \). A conjecture of Kostant asserts that there is a bijection between the \(G_0 \)-conjugacy classes of nilpotent elements in \(\mathfrak{g}_0 \) and the \(K \)-orbits of nilpotent elements in \(\mathfrak{p} \) which is given explicitly by the so-called Cayley transformation. This conjecture is proved in the paper.

1. Introduction. Let \(\mathfrak{g}_0 = \mathfrak{t}_0 + \mathfrak{p}_0 \) be a Cartan decomposition of a real semisimple Lie algebra and let \(\mathfrak{g} = \mathfrak{t} + \mathfrak{p} \) be its complexification. Denote by \(G \) the adjoint group of \(\mathfrak{g} \) and by \(G_0, K, K_0 \) the connected Lie subgroup of \(G \) with \(\mathfrak{t} \) resp., \(\mathfrak{g}_0, \mathfrak{t}_0 \) as its Lie algebra. We consider the adjoint action of \(G \) and \(G_0 \) and their restrictions to the subgroups \(K \) and \(K_0 \), respectively.

According to D. King [7] it was conjectured by B. Kostant that there is a bijection between the \(G_0 \)-conjugacy classes of nilpotent elements in \(\mathfrak{g}_0 \) and the \(K \)-conjugacy classes of nilpotent elements in \(\mathfrak{p} \) given explicitly by the so-called Cayley transformation. Of course it suffices to consider the case when \(\mathfrak{g}_0 \) is simple If \(\mathfrak{g}_0 \) is of classical type then the conjecture has been verified recently by D. King [7] using case by case considerations.

In this paper we give a proof of Kostant’s conjecture (in full generality) by a completely different method. Our proof is based on Vinberg’s work on the classification of nilpotent elements in graded Lie algebras.

The tables of nilpotent \(K \)-orbits in \(\mathfrak{p} \) for exceptional simple Lie algebras \(\mathfrak{g} \) will be submitted for publication elsewhere. These tables then can be considered as a classification of nilpotent \(G_0 \)-conjugacy classes in \(\mathfrak{g}_0 \). When \(\mathfrak{g}_0 \) is of Cartan type EV this was accomplished by Antonyan [1], but he does not indicate which nilpotent \(K \)-orbits in \(\mathfrak{p} \) belong to the same \(G \)-orbit.

I would like to thank D. King for sending me his preprint [7]. It was this preprint that prompted me to look for a direct proof of Kostant’s conjecture.

2. Notations and definitions. \(\mathfrak{g}_0 \) will be a finite-dimensional real Lie algebra and \(\mathfrak{g}_0 = \mathfrak{t}_0 + \mathfrak{p}_0 \) its Cartan decomposition. Its complexification will be written as \(\mathfrak{g} = \mathfrak{t} + \mathfrak{p} \).

\(G \) denotes the adjoint group of \(\mathfrak{g} \) and for each subalgebra of \(\mathfrak{g} \), denoted by a German letter (possibly with a subscript), the corresponding connected Lie subgroup

Received by the editors February 5, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 17B20, 22E60; Secondary 17B45.

The support through the NSERC Grant A-5285 is gratefully acknowledged.
of G will be denoted by the corresponding uppercase italic letter (and the same subscript).

If \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} and α a root of $(\mathfrak{g}, \mathfrak{h})$ then \mathfrak{g}^{α} will denote the corresponding root space of \mathfrak{g}.

Let $\mathfrak{s} = \bigoplus \mathfrak{s}_k$ be a \mathbb{Z}-graded complex semisimple Lie algebra. Then there is a unique element $H \in \mathfrak{s}$ such that $\mathfrak{s}_k = \{X \in \mathfrak{s} : [H, X] = kX\}$ for all $k \in \mathbb{Z}$. Clearly $H \in \mathfrak{s}_0$ and we call H the defining element of this \mathbb{Z}-graded algebra. Since H determines the gradation of \mathfrak{s} we shall refer to this \mathbb{Z}-graded Lie algebra as (\mathfrak{s}, H).

If $\mathfrak{s} = \bigoplus \mathfrak{s}_k$ is \mathbb{Z}-graded then by using the canonical surjection $\mathbb{Z} \rightarrow \mathbb{Z}_2 := \mathbb{Z}/2\mathbb{Z}$ we obtain a \mathbb{Z}_2-grading of \mathfrak{s} which we call the associated \mathbb{Z}_2-grading.

The algebra $\mathfrak{g} = \mathfrak{t} + \mathfrak{p}$ is a \mathbb{Z}_2-graded Lie algebra. A \mathbb{Z}-graded subalgebra of this \mathbb{Z}_2-graded algebra is a \mathbb{Z}-graded subalgebra $\mathfrak{s} = \bigoplus \mathfrak{s}_k$ of \mathfrak{g} such that $\mathfrak{s}_k \subseteq \mathfrak{t}$ for k even and $\mathfrak{s}_k \subseteq \mathfrak{p}$ for k odd.

By θ we denote the automorphism of \mathfrak{g}_0 which is 1 on \mathfrak{t}_0 and -1 on \mathfrak{p}_0. We also denote by θ its extension to a complex automorphism of \mathfrak{g}.

By σ we denote the conjugation of \mathfrak{g} with respect to its real form \mathfrak{g}_0. If \mathfrak{s} is a σ-stable subalgebra of \mathfrak{g} then by \mathfrak{s}^{σ} we denote the subalgebra of \mathfrak{s} consisting of elements of \mathfrak{s} fixed by σ.

A \mathbb{Z}-graded semisimple Lie algebra $\mathfrak{g} = \bigoplus \mathfrak{s}_k$ is called locally flat if $\dim \mathfrak{s}_0 = \dim \mathfrak{s}_1$. In that case the group S_0 has precisely one open orbit in \mathfrak{s}_1 under the adjoint action and we shall refer to any element of that orbit as a generic element of \mathfrak{s}_1. For each generic element $X \in \mathfrak{s}_1$ the centralizer of X in S_0 is finite. If this centralizer is trivial then we say that this \mathbb{Z}-graded algebra is flat. These definitions are due to Vinberg [11].

A subalgebra of \mathfrak{g} is called regular if it is normalized by some Cartan subalgebra of \mathfrak{g}. A nonzero nilpotent element $X \in \mathfrak{g}$ and its G-conjugacy class $G \cdot X$ are said to be semiregular (in \mathfrak{g}) if $G \cdot X$ does not meet any proper regular semisimple subalgebra of \mathfrak{g}. Given any nonzero nilpotent element $X \in \mathfrak{g}$ there exists a regular semisimple subalgebra \mathfrak{s} of \mathfrak{g} such that $G \cdot X \cap \mathfrak{s}$ is nonempty and every element of this intersection is semiregular in \mathfrak{s}. Dynkin’s classification of nilpotent G-conjugacy classes of \mathfrak{g} is based on the classification of semiregular nilpotent classes. The semiregular nilpotent G-conjugacy classes are also discussed by Elkington [6].

Let $X \neq 0$ be a nilpotent element of \mathfrak{g}. By a theorem of Morozov there exist $H, Y \in \mathfrak{g}$ such that

$$[X, Y] = -H, \quad [H, X] = 2X, \quad [H, Y] = -2Y.$$

Following Bourbaki [3] we shall call such triple (X, H, Y) an $\mathfrak{s}l_2$-triple. (Usually one replaces the equality $[X, Y] = -H$ by $[X, Y] = H$ in the above definition but we make this departure in order to conform with the terminology of [3].)

A real Cayley triple is an $\mathfrak{s}l_2$-triple (E, H, F) in \mathfrak{g}_0 such that $\theta(E) = F$. This implies that $\theta(F) = E$, $\theta(H) = -H$ and consequently $H \in \mathfrak{p}_0$, $E + F \in \mathfrak{t}_0$, and $E - F \in \mathfrak{p}_0$.

A complex Cayley triple is an $\mathfrak{s}l_2$-triple (E, H, F) in \mathfrak{g} such that $E, F \in \mathfrak{p}$ and $\sigma(E) = -F$. It follows that $\sigma(F) = -E$, $\sigma(H) = -H$, $H \in \mathfrak{t}_0$, $E + F \in \mathfrak{t}_0$, and $E - F \in \mathfrak{p}_0$.
Clearly K_0 acts by adjoint action on both real and complex Cayley triples. The Cayley transform c is a map from real to complex Cayley triples defined by

$$c(E, H, F) = \left(\frac{1}{2}(H + iF - iE), i(E + F), \frac{1}{2}(-H + iF - iE) \right).$$

It is easy to check that this map is bijective and K_0-equivariant and that its inverse is given by

$$c^{-1}(E, H, F) = \left(\frac{1}{2}(E + F - H), E - F, -\frac{1}{2}(E + F + H) \right).$$

Hence c induces a bijection \tilde{c} from the set of K_0-conjugacy classes of real Cayley triples to the set of K_0-conjugacy classes of complex Cayley triples.

An \mathfrak{s}_2-triple (E, H, F) in \mathfrak{g} is called normal if $E, F \in \mathfrak{p}$ and $H \in \mathfrak{k}$. They have been studied extensively by Kostant and Rallis [8].

3. Some known results. Define a map ϕ from the set of K_0-conjugacy classes of real Cayley triples to the set of nonzero nilpotent G_0-orbits in \mathfrak{g}_0 by assigning to the class containing the real Cayley triple (E, H, F) the orbit $G_0 \cdot E$. It is shown by King [7, Lemma 1.1] that ϕ is surjective.

Each K_0-conjugacy class of complex Cayley triples is contained in a unique K-conjugacy class of normal \mathfrak{s}_2-triples. Hence the inclusion relation defines a map ψ_0 from the set of K_0-conjugacy classes of complex Cayley triples to the set of K-conjugacy classes of normal \mathfrak{s}_2-triples. King shows that $\psi \circ c \circ \phi^{-1}$ is a well-defined map from the set of nonzero nilpotent G_0-orbits in \mathfrak{g}_0 to the set of K-orbits of normal \mathfrak{s}_2-triples (the proof is in the paragraph following Remark 1.1). He also shows that this map is injective. His proof of this fact is based on a theorem of Kostant and Rao the proof of which was published by D. Barbasch [2, Proposition 3.1]. These proofs will not be reproduced here. In the Addendum we show that ϕ is also injective.

Let ψ_1 be the map from the set of K-conjugacy classes of normal \mathfrak{s}_2-triples to the set of nonzero nilpotent K-orbits in \mathfrak{p} which assigns to the class containing the normal \mathfrak{s}_2-triple (E, H, F) the orbit $K \cdot E$. Kostant and Rallis [8, Proposition 4] have shown that ψ_1 is injective.

Now we can state Kostant's conjecture: The map $\psi_1 \circ \psi_0 \circ c \circ \phi^{-1}$ from nonzero nilpotent G_0-orbits in \mathfrak{g}_0 to nonzero nilpotent K-orbits in \mathfrak{p} is bijective. Some partial results in connection with this conjecture have been obtained by L. Preiss-Rothschild [9].

From the results stated above we know that this map is injective. This is the content of Proposition 1.2 in [7].

In order to complete the proof of the conjecture it remains to prove that ψ_0 is also surjective, i.e., that every K-conjugacy class of normal \mathfrak{s}_2-triples in \mathfrak{g} contains a complex Cayley triple. Equivalently, it suffices to show that the map $\psi_1 = \psi_1 \circ \psi_0$ is surjective. That will be accomplished in §5.

The following lemma will be needed for our proof. The validity of this lemma follows from the description of nilpotent G-orbits in \mathfrak{g}, which was accomplished by Dynkin [5] (see also [6]) and the description of flat Lie algebras in [11 or 12].

Lemma 1. Let (E, H, F) be an \mathfrak{s}_2-triple in \mathfrak{g} with E a semiregular nilpotent in \mathfrak{g}. Then $\text{ad}(H/2)$ has integer eigenvalues, the \mathbb{Z}-graded Lie algebra $(\mathfrak{g}, H/2) = \bigoplus_{k \in \mathbb{Z}} s_k$ is flat, and E is a generic element of \mathfrak{s}_1.

4. Basic Lemma. For the proof of the basic lemma we need the following technical lemma.

Lemma 2. Assume that \(\text{rank } \mathfrak{k} = \text{rank } \mathfrak{g} \), fix a Cartan subalgebra \(\mathfrak{h}_0 \) of \(\mathfrak{k}_0 \) and let \(\mathfrak{h} = \mathfrak{h}_0 + i\mathfrak{h}_0 \). Let \(R \) be the root system of \((\mathfrak{g}, \mathfrak{h}) \) and \(\mathfrak{R}^{(0)} = \{ \alpha \in R : \mathfrak{g}^\alpha \subset \mathfrak{k} \} \), \(\mathfrak{R}^{(1)} = \{ \alpha \in R : \mathfrak{g}^\alpha \subset \mathfrak{p} \} \).

Then there exists a Chevalley system \((X_\alpha), \alpha \in R \), of \((\mathfrak{g}, \mathfrak{h}) \) such that

\[
\sigma(X_\alpha) = (-1)^k X_{-\alpha}, \quad \alpha \in \mathfrak{R}^{(k)}.
\]

(For the definition of Chevalley systems see [3, Chapitre VIII, §3, no. 4, p. 84].)

Proof. Let \((Y_\alpha), \alpha \in R \), be any Chevalley system of \((\mathfrak{g}, \mathfrak{h}) \).

The \(\mathbb{R} \)-span of \(\mathfrak{h}_0 \) and the vectors \(Y_\alpha + Y_{-\alpha}, i(Y_\alpha - Y_{-\alpha}), \alpha \in \mathfrak{R}^{(0)} \); and \(i(Y_\alpha + Y_{-\alpha}), Y_\alpha - Y_{-\alpha}, \alpha \in \mathfrak{R}^{(1)} \); are a real form \(\mathfrak{g}^\# \) of \(\mathfrak{g} \) isomorphic to \(\mathfrak{g}_0 \). Choose an isomorphism \(\tau : \mathfrak{g}^\# \rightarrow \mathfrak{g}_0 \) such that \(\tau(\mathfrak{h}_0) = \mathfrak{h}_0 \) and extend \(\tau \) to an automorphism of \(\mathfrak{g} \). Set \(X_\alpha = \tau(Y_\alpha) \). Then \((X_\alpha), \alpha \in R \), is a Chevalley system of \((\mathfrak{g}, \mathfrak{h}) \) having the required properties.

Now we can prove our basic lemma.

Lemma 3. Let \((\mathfrak{g}, \mathfrak{H}/2) = \bigoplus \mathfrak{s}_k, k \in \mathbb{Z} \), be a simple flat complex Lie algebra and assume that the associated \(\mathbb{Z}_2 \)-grading on \(\mathfrak{g} \) coincides with \(\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p} \). Then there exists \(X \in \mathfrak{s}_1 \) such that

\[
[X, \sigma(X)] = H.
\]

Proof. Fix a Cartan subalgebra \(\mathfrak{h}_0 \) of \(\mathfrak{k}_0 \) such that \(\mathfrak{h}_0 \subset \mathfrak{s}_0 \) and set \(\mathfrak{h} = \mathfrak{h}_0 + i\mathfrak{h}_0 \). Let \(R \) be the root system of \((\mathfrak{g}, \mathfrak{h}) \) and for \(k \in \mathbb{Z} \) let

\[
R_k = \{ \alpha \in R : \mathfrak{g}^\alpha \subset \mathfrak{s}_k \}. \]

Also define

\[
\mathfrak{R}^{(0)} = \bigcup_{k \in \mathbb{Z}} R_{2k}, \quad \mathfrak{R}^{(1)} = \bigcup_{k \in \mathbb{Z}} R_{2k+1}.
\]

By Lemma 2 there exists a Chevalley system \((X_\alpha), \alpha \in R \), such that

\[
\sigma(X_\alpha) = (-1)^k X_{-\alpha}, \quad \alpha \in \mathfrak{R}^{(k)}.
\]

For \(\alpha \in R_1 \) let \(Y_\alpha = -X_{-\alpha} \). Let \(H_\alpha \) be the unique element of \([\mathfrak{g}^\alpha, \mathfrak{g}^{-\alpha}] \) such that \(\alpha(H_\alpha) = 2 \). Recall that \([X_\alpha, X_{-\alpha}] = -H_\alpha \), \(\alpha \in R \), and so \([X_\alpha, Y_\alpha] = H_\alpha \) for \(\alpha \in R_1 \).

We shall seek a solution of equation (1) in the form

\[
X = \sum_{\alpha \in R_1} \lambda_\alpha X_\alpha
\]

with all \(\lambda_\alpha \) real. Then

\[
\sigma(X) = \sum_{\alpha \in R_1} \lambda_\alpha Y_\alpha
\]

and equation (1) can be written as

\[
\sum_{\alpha, \beta \in R_1} \lambda_\alpha \lambda_\beta [X_\alpha, Y_\beta] = H.
\]
Assume first that our flat Lie algebra \((g, H/2)\) is principal, i.e., that \(R_1\) is a base, say \(B\), of \(R\). In that case \(\alpha - \beta \notin R\) for \(\alpha, \beta \in B\) and so (2) becomes

\[
\sum_{\alpha \in B} \lambda_{\alpha}^2 H_{\alpha} = H.
\]

Since \(\alpha(H) = 2\) for all \(\alpha \in B\), this equation is equivalent to the system

\[
\sum_{\beta \in B} \alpha(H_{\beta}) \lambda_{\beta}^2 = 2, \quad \alpha \in B.
\]

By a theorem of Vinberg [10, Theorem 3] the unique solution \(\mu_{\beta}, \beta \in R\), of the system of linear equations

\[
\sum_{\beta \in B} \alpha(H_{\beta}) \mu_{\beta} = 2, \quad \alpha \in B,
\]

is positive in the sense that \(\mu_{\beta} > 0\) for each \(\beta \in B\). It follows that the system (3) has a real solution.

Next assume that \((g, H/2)\) is the simple flat Lie algebra \(D_{n+m+1}(a_m)\), \(n > m \geq 1\), see [5 or 6]. In this case we shall use the notations for roots, the Chevalley system, etc., given in Bourbaki [3, Chapitre VIII, §13, no. 4, pp. 206–212]. Then \(H/2\) is the diagonal matrix of order \(2n + 2m + 2\) whose diagonal entries are the integers \(n, n-1, \ldots, -n\) and \(m, m-1, \ldots, -m\) arranged in nonincreasing order. The set \(R_1\) consists of the roots

\[
\begin{align*}
\varepsilon_i - \varepsilon_{i+1}, & \quad 1 \leq i \leq n - m; \quad \varepsilon_{n-m} - \varepsilon_{n-m+2}; \\
\varepsilon_{n-m+2k-1} - \varepsilon_{n-m+2k}, & \quad \varepsilon_{n-m+2k} - \varepsilon_{n-m+2k+1}, \quad 1 \leq k \leq m; \\
\varepsilon_{n-m+2k-1} - \varepsilon_{n-m+2k+2}, & \quad \varepsilon_{n-m+2k} - \varepsilon_{n-m+2k+2}, \quad 1 \leq k \leq m - 1;
\end{align*}
\]

and

\[
\varepsilon_{n+m-1} + \varepsilon_{n+m+1}; \quad \varepsilon_{n+m} + \varepsilon_{n+m+1}.
\]

In this case some of the \(\lambda_{\alpha}\) can be taken to be zero. An explicit solution of equation (1) is provided by

\[
X = \lambda_1 X_{\varepsilon_1} - \varepsilon_2 + \lambda_2 X_{\varepsilon_2} - \varepsilon_3 + \cdots + \lambda_{n-m} X_{\varepsilon_{n-m}} - \varepsilon_{n-m+1} \\
+ \mu_1 X_{\varepsilon_{n-m+1}} - \varepsilon_{n-m+3} + \nu_1 X_{\varepsilon_{n-m+2}} - \varepsilon_{n-m+4} \\
+ \mu_2 X_{\varepsilon_{n-m+3}} - \varepsilon_{n-m+5} + \nu_2 X_{\varepsilon_{n-m+4}} - \varepsilon_{n-m+6} \\
+ \cdots \\
+ \mu_{m-1} X_{\varepsilon_{n+m-3}} - \varepsilon_{n+m-1} + \nu_{m-1} X_{\varepsilon_{n+m-2}} - \varepsilon_{n+m} \\
+ \rho_1 X_{\varepsilon_{n+m-1}} - \varepsilon_{n+m+1} + \sigma_1 X_{\varepsilon_{n+m-1}} - \varepsilon_{n+m+1} \\
+ \rho_2 X_{\varepsilon_{n+m}} - \varepsilon_{n+m+1} + \sigma_2 X_{\varepsilon_{n+m}} + \varepsilon_{n+m+1}
\]

where

\[
\begin{align*}
\lambda_k^2 &= k(2n - k + 1), \quad 1 \leq k \leq n - m; \\
\mu_k^2 &= (n - m)(n + m + 1) + k(2m - k + 1), \quad 1 \leq k \leq m - 1; \\
\nu_k^2 &= k(2m - k + 1), \quad 1 \leq k \leq m - 1; \\
\rho_1 + i\rho_2 &= \pm \sqrt{z}, \quad \sigma_1 + i\sigma_2 = \pm \sqrt{w} \text{ with } z \text{ and } w \text{ complex numbers satisfying } \\
z + w = (n - m)(n + m + 1), \quad |z| = |w| = m^2 - 3m + 4 + \frac{1}{2}(n - m)(n + m + 1).
\end{align*}
\]
We omit the routine details of the verification of this claim.

There remain five exceptional simple flat Lie algebras to be dealt with, namely, \(E_8(a_1), E_8(a_2), E_7(a_1), E_7(a_2),\) and \(E_6(a_1)\). In order to exhibit an explicit solution of (1) it will be convenient to use the Chevalley system of \(E_8\) constructed in our paper [4]. For the convenience of the reader we shall review some basic facts about this Chevalley system.

The Lie algebra \(E_8\) is realized as \(\mathbb{Z}\)-graded algebra \(g = \bigoplus_{k \in \mathbb{Z}} s_k\) where \(s_0 = V \otimes V^*, s_1 = \wedge^3 V, s_{-1} = \wedge^3 V^*, s_2 = \wedge^2 V, s_{-2} = \wedge^2 V^*, s_3 = V, s_4 = V^*\) and \(s_k = 0\) otherwise. Here \(V\) denotes a complex vector space of dimension 8 with a fixed basis \(e_k, 1 \leq k \leq 8\), and \(V^*\) its dual space with the dual basis \(e_k^*, 1 \leq k \leq 8\).

For the definition of the Lie bracket see [4]. We mention only that \(s_0 \cong \mathfrak{gl}(V)\), that the action of \(s_0\) on each \(s_k\) is the standard one, and that

\[
[a \wedge b \wedge c, f \wedge g \wedge h] = -\begin{vmatrix}
f(a) & f(b) & f(c) & f \\
g(a) & g(b) & g(c) & g \\
h(a) & h(b) & h(c) & h \\
a & b & c & 1/3
\end{vmatrix}
\]

where \(a, b, c \in V, f, g, h \in V^*\) and when evaluating this determinant the product of, say, \(a\) and \(f\) should be written as \(a \otimes f\).

Using the formula (4) one finds that

\[
[e_{ij}, e^{jk}] = e_i^r
\]

if \(i \neq r, i < j < k,\) and \(r < j\).

Writing \(e_i^j = e_i \otimes e^j\), the subspace \(h\) spanned by the elements \(e_i^j, 1 \leq i \leq 8,\) is a Cartan subalgebra of \(s_0\) and of \(g\). The Chevalley system of \((g, h)\) is given by the elements:

\[
e_i^j, -e_j^i \quad (1 \leq i < j \leq 8);
\]
\[
e_i, -e^i \quad (1 \leq i \leq 8);
\]
\[
e_{i,j,k}, -e_i^{j,k} \quad (1 \leq i < j < k \leq 8);
\]
\[
e_{i,j}, e_j^i \quad (1 \leq i < j \leq 8);
\]

where \(e_{i,j,k} = e_i \wedge e_j \wedge e_k, e_i^{j,k} = e_i \wedge e^j \wedge e^k,\) etc.

In [4] \(\lambda_i, 1 \leq i \leq 8,\) is a basis of \(h^*\) dual to the basis \(e_i^j, 1 \leq i \leq 8,\) of \(h\). A base \(B\) of the root system \(R\) of \((g, h)\) consists of the roots \(\lambda_i - \lambda_{i+1}, 1 \leq i \leq 7,\) and the root \(\lambda_6 + \lambda_7 + \lambda_8:\)

\[
\lambda_1 - \lambda_2 \quad \lambda_2 - \lambda_3 \quad \lambda_3 - \lambda_4 \quad \lambda_4 - \lambda_5 \quad \lambda_5 - \lambda_6 \quad \lambda_6 - \lambda_7 \quad \lambda_7 - \lambda_8
\]

\[
\lambda_6 + \lambda_7 + \lambda_8
\]

For \(\alpha \in B\) the elements \(H_\alpha \in h\) are given by

\[
h_i := H_{\lambda_i - \lambda_{i+1}} = e_i - e_i^{i+1}, \quad 1 \leq i \leq 7,
\]
\[
h_8 := H_{\lambda_6 + \lambda_7 + \lambda_8} = -\frac{1}{3} + e_6^6 + e_7^7 + e_8^8,
\]

whence \(-\frac{1}{3}\) means \(-\frac{1}{3} \sum_{i=1}^{8} e_i^i\).

Case \(E_8(a_1)\). In this case we have

\[
H = 46h_1 + 90h_2 + 132h_3 + 172h_4 + 210h_5 + 142h_6 + 72h_7 + 106h_8,
\]
and R_1 consists of the roots $\lambda_i - \lambda_{i+1}, i \neq 5, 6 + \lambda_7 + \lambda_8, \lambda_4 - \lambda_6, \lambda_5 - \lambda_7$, and $\lambda_5 + \lambda_7 + \lambda_8$.

An explicit solution of (1) is given by

$$X = \sqrt{46}e_1^2 + \sqrt{90}e_2^3 + \sqrt{132}e_3^4 + \sigma_1 e_4^5 + \sqrt{72}e_5^8 + \sqrt{106}e_6^7 + \rho_2 e_8^6 + \sigma_2 e_5^7,$$

where $\rho_1 + i\rho_2 = \pm \sqrt{z}$, $\sigma_1 - i\sigma_2 = \pm \sqrt{w}$ and z and w are complex numbers such that $|z| = 172$, $|w| = 142$, $z + w = -106$.

Case $E_6(a_2)$. We have

$$H = 38h_1 + 74h_2 + 108h_3 + 142h_4 + 174h_5 + 118h_6 + 60h_7 + 88h_8,$$

and R_1 consists of the roots $\lambda_i - \lambda_{i+1}, i \neq 3, 5; \lambda_6 + \lambda_7 + \lambda_8, \lambda_2 - \lambda_4, \lambda_3 - \lambda_5, \lambda_4 - \lambda_6, \lambda_5 - \lambda_7$, and $\lambda_5 + \lambda_7 + \lambda_8$. A solution of (1) is provided by

$$X = \sqrt{38}e_1^2 + \sqrt{74}e_2^3 + \sqrt{34}e_3^5 + \sigma_1 e_4^7 + \sqrt{60}e_5^8 + \sigma_1 e_6^7 + \sqrt{108}e_8^6 + \rho_2 e_5^7 + \sigma_2 e_5^7,$$

where $\rho_1 + i\rho_2 = \pm \sqrt{z}$, $\sigma_1 - i\sigma_2 = \pm \sqrt{w}$ and z and w are complex numbers such that $|z| = 118$, $|w| = 88$, $z + w = 74$.

Formula (5) is useful when one checks that X is indeed a solution.

Case $E_7(a_1)$. We have

$$H = 21h_2 + 40h_3 + 57h_4 + 72h_5 + 50h_6 + 26h_7 + 37h_8,$$

and R_1 is the same as in case $E_6(a_1)$ except that the root $\lambda_1 - \lambda_2$ should be omitted. A solution X of (1) is given by

$$X = \sqrt{21}e_2^3 + \sqrt{40}e_4^3 + \sigma_1 e_6^4 + \rho_1 e_7^6 + \sqrt{26}e_7^8 + \sqrt{37}e_8^6 + \sigma_2 e_6^7 + \rho_2 e_5^7,$$

where $\rho_1 + i\rho_2 = \pm \sqrt{z}$, $\sigma_1 - i\sigma_2 = \pm \sqrt{w}$ and z and w are complex numbers satisfying $|z| = 50$, $|w| = 57$, $z + w = -37$.

Case $E_7(a_2)$. Now

$$H = 17h_2 + 32h_3 + 47h_4 + 60h_5 + 42h_6 + 22h_7 + 31h_8$$

and R_1 is the same as in the case $E_6(a_2)$ except that the root $\lambda_1 - \lambda_2$ should be omitted. A solution X of (1) is given by

$$X = \sqrt{17}e_2^3 + \sqrt{15}e_4^3 + \rho_1 e_6^4 + \sqrt{22}e_7^8 + \sqrt{32}e_8^6 + \rho_2 e_5^7 + \sigma_2 e_5^7,$$

where $\rho_1 + i\rho_2 = \pm \sqrt{z}$, $\sigma_1 + i\sigma_2 = \pm \sqrt{w}$ and z and w are complex numbers satisfying $|z| = 42$, $|w| = 31$, $z + w = 17$.

Case $E_6(a_1)$. In this case

$$H = 12h_3 + 22h_4 + 30h_5 + 22h_6 + 12h_7 + 16h_8,$$

and R_1 is the same as in case $E_6(a_1)$ except that the roots $\lambda_1 - \lambda_2$ and $\lambda_2 - \lambda_3$ should be omitted. A solution X of (1) is given by

$$X = \sqrt{12}e_3^3 + \rho_1 e_4^2 + \sigma_1 e_6^7 + \sqrt{12}e_7^8 + 4e_6^7 + \rho_2 e_4^6 + \sigma_2 e_5^7,$$

where $\rho_1 + i\rho_2 = \pm \sqrt{z}$, $\sigma_1 - i\sigma_2 = \pm \sqrt{w}$, and z and w are complex numbers satisfying $|z| = |w| = 22$, $z + w = -16$. This completes the proof of the lemma.
5. **Proof that \(\psi \) is surjective.** Let \(E \) be a nonzero nilpotent element in \(p \).
We have to show that there exists a complex Cayley triple \((X, H, Y)\) such that \(X \in K \cdot E \). The proof is by induction on the dimension of \(g \).

We can embed \(E \) in a normal \(\mathfrak{sl}_2 \)-triple \((E, H, F)\). Since \(H \) is a real semisimple element it is \(K \)-conjugate to an element of \(i\mathfrak{k}_0 \). Hence by replacing this triple by a suitable \(K \)-conjugate we may assume that \(H \in i\mathfrak{k}_0 \).

Let \(s = \bigoplus s_k, \ k \in \mathbb{Z}, \) be the \(\mathbb{Z} \)-graded subalgebra of the \(\mathbb{Z}_2 \)-graded algebra \(g = \mathfrak{k} + p \) defined as follows:

\[
s_k = \{ X \in \mathfrak{k} : [H, X] = 2kX \}
\]

for \(k \) even and

\[
s_k = \{ X \in p : [H, X] = 2kX \}
\]

for \(k \) odd. Clearly \(E \in s_1 \) and by a result of Vinberg [12, Lemma 2] \(s \) is reductive. If \(s \neq g \) then the induction hypothesis can be applied to the associated \(\mathbb{Z}_2 \)-graded algebra \(s = s \cap \mathfrak{k} \oplus s \cap p \) and the element \(E \).

Hence we may assume that \(s = g \). Since the centralizer of \(H \) in \(s \) is \(s_0 \), \(s = g \), and \(s_0 \subset \mathfrak{k} \), it follows that \(\text{rank } \mathfrak{k} = \text{rank } g \). Let us fix a Cartan subalgebra \(\mathfrak{h}_0 \) of \(\mathfrak{k}_0 \) such that \(iH \in \mathfrak{h}_0 \). Set \(\mathfrak{h} = \mathfrak{h}_0 + i\mathfrak{k}_0 \).

By a theorem of Vinberg and Elaśvili [13, p. 223] there exist \(X \in K \cdot E \) and a regular semisimple subalgebra \(t \) of \(g \) normalized by \(\mathfrak{h} \) such that \(X \in t \) and \(X \) is a semiregular nilpotent element of \(t \).

Since \(\mathfrak{h} \) normalizes \(t \), it follows that the \(\mathbb{Z}_2 \)-grading \(g = \mathfrak{k} + p \) induces a \(\mathbb{Z}_2 \)-grading on \(t \), i.e., that \(t = t \cap \mathfrak{k} \oplus t \cap p \). If \(t \neq g \) then the inductive hypothesis can be applied to \(t \) and \(X \). Hence we may assume that \(t = g \), i.e., that \(E \) is a semiregular nilpotent element of \(g \).

By Lemma 1 the \(\mathbb{Z} \)-graded algebra \(g = s = \bigoplus s_k \) is flat and \(E \) is a generic element of \(s_1 \). Since \(H \in i\mathfrak{k}_0 \subset i\mathfrak{k}_0 \), we have \(\sigma(H) = -H \) and consequently \(\sigma(s_k) = s_{-k} \) for all \(k \).

Assume that there is an \(X \in s_1 \) such that \([X, \sigma(X)] = H \). Then \((X, H, -\sigma(X))\) is a complex Cayley triple and by a result of Kostant and Rallis [8, Lemma 4] the normal \(\mathfrak{sl}_2 \)-triples \((E, H, F)\) and \((X, H, -\sigma(X))\) are \(K \)-conjugate.

Hence it suffices to prove the existence of an element \(X \in s_1 \) such that \([X, \sigma(X)] = H \). Since every flat Lie algebra is a direct product of simple flat Lie algebras we have

\[
(g, H/2) = (g^{(1)}, H_1/2) \times \cdots \times (g^{(m)}, H_m/2)
\]

where each \((g^{(k)}, H_k/2) \) is a simple flat Lie algebra and \(H = H_1 + \cdots + H_m \). This shows that without any loss of generality we may now assume that \(g \) is simple.

In Lemma 3 we have shown that in the case of simple flat Lie algebras the equation \([X, \sigma(X)] = H \) indeed has a solution for \(X \). This completes the proof of the conjecture.

Addendum (February 1987). The maps \(\phi \) and \(\psi_0 \) defined in §3 are in fact bijective. In view of the results mentioned there and our main theorem, the claim follows from the following proposition.

Proposition. The map \(\phi \) is injective.

Proof. Let \((E, H, F)\) and \((E', H', F')\) be two real Cayley triples with \(E' \in G_0 \cdot E \). By [3, Chapter VIII, §11, Lemma 4] these triples are \(G_0 \)-conjugate. By
using [9, Proposition 1.1] it follows that $E' - F' \in K_0 \cdot (E - F)$. Hence we may assume that $E' - F' = E - F = Z$, say. Let G_0^Z (resp., K_0^Z) be the centralizer of Z in G_0 (resp., K_0). Fix a maximal compact subgroup M of G_0^Z containing K_0^Z. If $x \in M$ write $x = y \exp(X)$ with $y \in K_0$ and $X \in p_0$. By using an argument of L. Preiss-Rothschild [9, Proof of Proposition 1.1] it follows from $\exp(X) \cdot Z = y^{-1} \cdot Z$ that $y^{-1} \cdot Z = Z$. Hence $y \in K_0^Z$, $\exp(X) \in M$ and since M is compact we must have $X = 0$. Thus $M = K_0^Z$.

By [8, p. 779] $g_0^Z = \mathfrak{t}_0^Z \oplus \mathfrak{p}_0^Z$ is a Cartan decomposition of g_0^Z and consequently $G_0^Z = K_0^Z \cdot \exp(p_0^Z)$.

If $a \in G_0$ is an element which maps the triple (E, H, F) to (E', H', F') then $a \in G_0^Z$ and $a \cdot (E + F) = E' + F'$. Write $a = b \exp(Y)$ with $b \in K_0^Z$ and $Y \in p_0^Z$. Then by applying the above mentioned argument to $\exp(Y) \cdot (E + F) = b^{-1} \cdot (E' + F')$ we infer that $b^{-1} \cdot (E' + F') = E + F$. Thus $b \in K_0$ sends (E, H, F) to (E', F', H').

ADDED IN PROOF. After this paper was written D. King informed me that Jiro Sekiguchi had also proved Kostant’s conjecture (by a different method) in a preprint entitled Remarks on real nilpotent orbits of a symmetric pair.

REFERENCES

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF WATERLOO, WATERLOO, ONTARIO, CANADA N2L 3G1