## VMO, ESV, and Toeplitz operators on the Bergman space

HTML articles powered by AMS MathViewer

- by Ke He Zhu PDF
- Trans. Amer. Math. Soc.
**302**(1987), 617-646 Request permission

## Abstract:

This paper studies the largest ${C^*}$-subalgebra $Q$ of ${L^\infty }({\mathbf {D}})$ such that the Toeplitz operators ${T_f}$ on the Bergman space $L_a^2({\mathbf {D}})$ with symbols $f$ in $Q$ have a symbol calculus modulo the compact operators. $Q$ is characterized by a condition of vanishing mean oscillation near the boundary. I also give several other necessary and sufficient conditions for a bounded function to be in $Q$. After decomposing $Q$ in a "nice" way, I study the Fredholm theory of Toeplitz operators with symbols in $Q$. The essential spectrum of ${T_f}(f \in Q)$ is shown to be connected and computable in terms of the Stone-Cěch compactification of ${\mathbf {D}}$. The results in this article partially answer a question posed in [**3**] and give several new necessary and sufficient conditions for a bounded analytic function on the open unit disc to be in the little Bloch space ${\mathcal {B}_0}$.

## References

- Sheldon Axler,
*The Bergman space, the Bloch space, and commutators of multiplication operators*, Duke Math. J.**53**(1986), no. 2, 315–332. MR**850538**, DOI 10.1215/S0012-7094-86-05320-2 - Sheldon Axler, John B. Conway, and Gerard McDonald,
*Toeplitz operators on Bergman spaces*, Canadian J. Math.**34**(1982), no. 2, 466–483. MR**658979**, DOI 10.4153/CJM-1982-031-1
Sheldon Axler, - V. Bargmann,
*Remarks on a Hilbert space of analytic functions*, Proc. Nat. Acad. Sci. U.S.A.**48**(1962), 199–204. MR**133009**, DOI 10.1073/pnas.48.2.199 - F. A. Berezin,
*Covariant and contravariant symbols of operators*, Izv. Akad. Nauk SSSR Ser. Mat.**36**(1972), 1134–1167 (Russian). MR**0350504** - C. A. Berger and L. A. Coburn,
*Toeplitz operators and quantum mechanics*, J. Funct. Anal.**68**(1986), no. 3, 273–299. MR**859136**, DOI 10.1016/0022-1236(86)90099-6 - C. A. Berger and L. A. Coburn,
*Toeplitz operators on the Segal-Bargmann space*, Trans. Amer. Math. Soc.**301**(1987), no. 2, 813–829. MR**882716**, DOI 10.1090/S0002-9947-1987-0882716-4 - Stefan Bergman,
*The Kernel Function and Conformal Mapping*, Mathematical Surveys, No. 5, American Mathematical Society, New York, N. Y., 1950. MR**0038439** - L. A. Coburn,
*Singular integral operators and Toeplitz operators on odd spheres*, Indiana Univ. Math. J.**23**(1973/74), 433–439. MR**322595**, DOI 10.1512/iumj.1973.23.23036 - R. R. Coifman, R. Rochberg, and Guido Weiss,
*Factorization theorems for Hardy spaces in several variables*, Ann. of Math. (2)**103**(1976), no. 3, 611–635. MR**412721**, DOI 10.2307/1970954 - Ronald G. Douglas,
*Banach algebra techniques in operator theory*, Pure and Applied Mathematics, Vol. 49, Academic Press, New York-London, 1972. MR**0361893** - Peter L. Duren,
*Theory of $H^{p}$ spaces*, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR**0268655** - John B. Garnett,
*Bounded analytic functions*, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR**628971** - Victor Guillemin,
*Toeplitz operators in $n$ dimensions*, Integral Equations Operator Theory**7**(1984), no. 2, 145–205. MR**750217**, DOI 10.1007/BF01200373 - Philip Hartman,
*On completely continuous Hankel matrices*, Proc. Amer. Math. Soc.**9**(1958), 862–866. MR**108684**, DOI 10.1090/S0002-9939-1958-0108684-8 - Nicholas P. Jewell,
*Toeplitz operators on the Bergman spaces and in several complex variables*, Proc. London Math. Soc. (3)**41**(1980), no. 2, 193–216. MR**585250**, DOI 10.1112/plms/s3-41.2.193 - U. Venugopalkrishna,
*Fredholm operators associated with strongly pseudoconvex domains in $C^{n}$*, J. Functional Analysis**9**(1972), 349–373. MR**0315502**, DOI 10.1016/0022-1236(72)90007-9 - Steven G. Krantz,
*Function theory of several complex variables*, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1982. MR**635928** - Gerard McDonald,
*Fredholm properties of a class of Toeplitz operators on the ball*, Indiana Univ. Math. J.**26**(1977), no. 3, 567–576. MR**482351**, DOI 10.1512/iumj.1977.26.26044 - G. McDonald and C. Sundberg,
*Toeplitz operators on the disc*, Indiana Univ. Math. J.**28**(1979), no. 4, 595–611. MR**542947**, DOI 10.1512/iumj.1979.28.28042 - Walter Rudin,
*Function theory in the unit ball of $\textbf {C}^{n}$*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR**601594** - Donald Sarason,
*Functions of vanishing mean oscillation*, Trans. Amer. Math. Soc.**207**(1975), 391–405. MR**377518**, DOI 10.1090/S0002-9947-1975-0377518-3 - Donald Sarason,
*Toeplitz operators with piecewise quasicontinuous symbols*, Indiana Univ. Math. J.**26**(1977), no. 5, 817–838. MR**463968**, DOI 10.1512/iumj.1977.26.26066

*Hankel operators on Bergman spaces*, Linear and Complex Analysis Problem Book (V. P. Havin, S. V. Hruššëv, and N. K. Nikol’skii, eds.), Lecture Notes in Math., Vol. 1043, Springer-Verlag, Berlin, 1984, pp. 262-263.

## Additional Information

- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**302**(1987), 617-646 - MSC: Primary 47B35; Secondary 30H05, 46L99
- DOI: https://doi.org/10.1090/S0002-9947-1987-0891638-4
- MathSciNet review: 891638