VMO, ESV, and Toeplitz operators on the Bergman space
HTML articles powered by AMS MathViewer
- by Ke He Zhu
- Trans. Amer. Math. Soc. 302 (1987), 617-646
- DOI: https://doi.org/10.1090/S0002-9947-1987-0891638-4
- PDF | Request permission
Abstract:
This paper studies the largest ${C^*}$-subalgebra $Q$ of ${L^\infty }({\mathbf {D}})$ such that the Toeplitz operators ${T_f}$ on the Bergman space $L_a^2({\mathbf {D}})$ with symbols $f$ in $Q$ have a symbol calculus modulo the compact operators. $Q$ is characterized by a condition of vanishing mean oscillation near the boundary. I also give several other necessary and sufficient conditions for a bounded function to be in $Q$. After decomposing $Q$ in a "nice" way, I study the Fredholm theory of Toeplitz operators with symbols in $Q$. The essential spectrum of ${T_f}(f \in Q)$ is shown to be connected and computable in terms of the Stone-Cěch compactification of ${\mathbf {D}}$. The results in this article partially answer a question posed in [3] and give several new necessary and sufficient conditions for a bounded analytic function on the open unit disc to be in the little Bloch space ${\mathcal {B}_0}$.References
- Sheldon Axler, The Bergman space, the Bloch space, and commutators of multiplication operators, Duke Math. J. 53 (1986), no. 2, 315–332. MR 850538, DOI 10.1215/S0012-7094-86-05320-2
- Sheldon Axler, John B. Conway, and Gerard McDonald, Toeplitz operators on Bergman spaces, Canadian J. Math. 34 (1982), no. 2, 466–483. MR 658979, DOI 10.4153/CJM-1982-031-1 Sheldon Axler, Hankel operators on Bergman spaces, Linear and Complex Analysis Problem Book (V. P. Havin, S. V. Hruššëv, and N. K. Nikol’skii, eds.), Lecture Notes in Math., Vol. 1043, Springer-Verlag, Berlin, 1984, pp. 262-263.
- V. Bargmann, Remarks on a Hilbert space of analytic functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 199–204. MR 133009, DOI 10.1073/pnas.48.2.199
- F. A. Berezin, Covariant and contravariant symbols of operators, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 1134–1167 (Russian). MR 0350504
- C. A. Berger and L. A. Coburn, Toeplitz operators and quantum mechanics, J. Funct. Anal. 68 (1986), no. 3, 273–299. MR 859136, DOI 10.1016/0022-1236(86)90099-6
- C. A. Berger and L. A. Coburn, Toeplitz operators on the Segal-Bargmann space, Trans. Amer. Math. Soc. 301 (1987), no. 2, 813–829. MR 882716, DOI 10.1090/S0002-9947-1987-0882716-4
- Stefan Bergman, The Kernel Function and Conformal Mapping, Mathematical Surveys, No. 5, American Mathematical Society, New York, N. Y., 1950. MR 0038439
- L. A. Coburn, Singular integral operators and Toeplitz operators on odd spheres, Indiana Univ. Math. J. 23 (1973/74), 433–439. MR 322595, DOI 10.1512/iumj.1973.23.23036
- R. R. Coifman, R. Rochberg, and Guido Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103 (1976), no. 3, 611–635. MR 412721, DOI 10.2307/1970954
- Ronald G. Douglas, Banach algebra techniques in operator theory, Pure and Applied Mathematics, Vol. 49, Academic Press, New York-London, 1972. MR 0361893
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- Victor Guillemin, Toeplitz operators in $n$ dimensions, Integral Equations Operator Theory 7 (1984), no. 2, 145–205. MR 750217, DOI 10.1007/BF01200373
- Philip Hartman, On completely continuous Hankel matrices, Proc. Amer. Math. Soc. 9 (1958), 862–866. MR 108684, DOI 10.1090/S0002-9939-1958-0108684-8
- Nicholas P. Jewell, Toeplitz operators on the Bergman spaces and in several complex variables, Proc. London Math. Soc. (3) 41 (1980), no. 2, 193–216. MR 585250, DOI 10.1112/plms/s3-41.2.193
- U. Venugopalkrishna, Fredholm operators associated with strongly pseudoconvex domains in $C^{n}$, J. Functional Analysis 9 (1972), 349–373. MR 0315502, DOI 10.1016/0022-1236(72)90007-9
- Steven G. Krantz, Function theory of several complex variables, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1982. MR 635928
- Gerard McDonald, Fredholm properties of a class of Toeplitz operators on the ball, Indiana Univ. Math. J. 26 (1977), no. 3, 567–576. MR 482351, DOI 10.1512/iumj.1977.26.26044
- G. McDonald and C. Sundberg, Toeplitz operators on the disc, Indiana Univ. Math. J. 28 (1979), no. 4, 595–611. MR 542947, DOI 10.1512/iumj.1979.28.28042
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
- Donald Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391–405. MR 377518, DOI 10.1090/S0002-9947-1975-0377518-3
- Donald Sarason, Toeplitz operators with piecewise quasicontinuous symbols, Indiana Univ. Math. J. 26 (1977), no. 5, 817–838. MR 463968, DOI 10.1512/iumj.1977.26.26066
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 302 (1987), 617-646
- MSC: Primary 47B35; Secondary 30H05, 46L99
- DOI: https://doi.org/10.1090/S0002-9947-1987-0891638-4
- MathSciNet review: 891638