The connectedness of the group of automorphisms of $L^ 1(0,1)$
HTML articles powered by AMS MathViewer
- by F. Ghahramani
- Trans. Amer. Math. Soc. 302 (1987), 647-659
- DOI: https://doi.org/10.1090/S0002-9947-1987-0891639-6
- PDF | Request permission
Abstract:
For each of the radical Banach algebras ${L^1}(0,1)$ and ${L^1}(w)$ an integral representation for the automorphisms is given. This is used to show that the groups of the automorphisms of ${L^1}(0,1)$ and ${L^1}(w)$ endowed with bounded strong operator topology (BSO) are arcwise connected. Also it is shown that if $||| \cdot ||{|_p}$ denotes the norm of $B({L^p}(0,1)$, ${L^1}(0,1))$, $1 < p \leq \infty$, then the group of automorphisms of ${L^1}(0,1)$ topologized by $||| \cdot ||{|_p}$ is arcwise connected. It is shown that every automorphism $\theta$ of ${L^1}(0,1)$ is of the form $\theta = {e^{\lambda d}}{\operatorname {lim}}{e^{qn}}({\text {BSO}})$, where each ${q_n}$ is a quasinilpotent derivation. It is shown that the group of principal automorphisms of ${l^1}(w)$ under operator norm topology is arcwise connected, and every automorphism has the form ${e^{i\alpha d}}{({e^{\lambda d}}{e^D}{e^{ - \lambda d}})^ - }$, where $\alpha \in {\mathbf {R}}$, $\lambda > 0$, and $D$ is a derivation, and where ${({e^{\lambda d}}{e^D}{e^{ - \lambda d}})^ - }$ denotes the extension by continuity of ${e^{\lambda d}}{e^D}{e^{ - \lambda d}}$ from a dense subalgebra of ${l^1}(w)$ to ${l^1}(w)$.References
- John M. Bachar, Philip C. Curtis Jr., H. Garth Dales, and Marc P. Thomas (eds.), Radical Banach algebras and automatic continuity, Lecture Notes in Mathematics, vol. 975, Springer-Verlag, Berlin-New York, 1983. MR 697577
- W. F. Donoghue Jr., The lattice of invariant subspaces of a completely continuous quasi-nilpotent transformation, Pacific J. Math. 7 (1957), 1031–1035. MR 92124, DOI 10.2140/pjm.1957.7.1031
- F. Ghahramani, Homomorphisms and derivations on weighted convolution algebras, J. London Math. Soc. (2) 21 (1980), no. 1, 149–161. MR 576191, DOI 10.1112/jlms/s2-21.1.149
- F. Ghahramani, Isomorphisms between radical weighted convolution algebras, Proc. Edinburgh Math. Soc. (2) 26 (1983), no. 3, 343–351. MR 722565, DOI 10.1017/S0013091500004417
- Sandy Grabiner, Weighted convolution algebras as analogues of Banach algebras of power series, Radical Banach algebras and automatic continuity (Long Beach, Calif., 1981), Lecture Notes in Math., vol. 975, Springer, Berlin-New York, 1983, pp. 282–289. MR 697590
- Sandy Grabiner, Derivations and automorphisms of Banach algebras of power series, Memoirs of the American Mathematical Society, No. 146, American Mathematical Society, Providence, R.I., 1974. MR 0415321
- Frederick P. Greenleaf, Norm decreasing homomorphisms of group algebras, Pacific J. Math. 15 (1965), 1187–1219. MR 194911, DOI 10.2140/pjm.1965.15.1187
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der mathematischen Wissenschaften, Band 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156915
- Einar Hille, Functional Analysis and Semi-Groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, New York, 1948. MR 0025077
- Nicholas P. Jewell and Allan M. Sinclair, Epimorphisms and derivations on $L^1(0,1)$ are continuous, Bull. London Math. Soc. 8 (1976), no. 2, 135–139. MR 402507, DOI 10.1112/blms/8.2.135
- B. E. Johnson, An introduction to the theory of centralizers, Proc. London Math. Soc. (3) 14 (1964), 299–320. MR 159233, DOI 10.1112/plms/s3-14.2.299
- Herbert Kamowitz and Stephen Scheinberg, Derivations and automorphisms of $L^{1}\,(0,\,1)$, Trans. Amer. Math. Soc. 135 (1969), 415–427. MR 233210, DOI 10.1090/S0002-9947-1969-0233210-4
- Stephen Scheinberg, Automorphisms of commutative Banach algebras, Problems in analysis (Sympos. in honor of Salomon Bochner, Princeton Univ., Princeton, N.J., 1969) Princeton Univ. Press, Princeton, N.J., 1970, pp. 319–323. MR 0352989
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 302 (1987), 647-659
- MSC: Primary 46J35; Secondary 43A20
- DOI: https://doi.org/10.1090/S0002-9947-1987-0891639-6
- MathSciNet review: 891639