Une minoration de la norme de l’opérateur de Cauchy sur les graphes lipschitziens
HTML articles powered by AMS MathViewer
- by Guy David
- Trans. Amer. Math. Soc. 302 (1987), 741-750
- DOI: https://doi.org/10.1090/S0002-9947-1987-0891644-X
- PDF | Request permission
Abstract:
It was shown by T. Murai that the norm of the operator defined by the Cauchy kernel on the graph of a Lipschitz function $A$ is less than $C{(1 + {\left \| {A’} \right \|_\infty })^{1/2}}$. We use Garnett’s example to show that this estimate is optimal.References
- R. R. Coifman, A. McIntosh, and Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur $L^{2}$ pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), no. 2, 361–387 (French). MR 672839, DOI 10.2307/2007065
- John Garnett, Positive length but zero analytic capacity, Proc. Amer. Math. Soc. 24 (1970), 696–699; errata, ibid. 26 (1970), 701. MR 0276456, DOI 10.1090/S0002-9939-1970-0276456-5
- Takafumi Murai, Boundedness of singular integral operators of Calderón type. VI, Nagoya Math. J. 102 (1986), 127–133. MR 846134, DOI 10.1017/S0027763000000477
- L. D. Ivanov, The local structure of sets with finite variations, Mat. Sb. (N.S.) 78 (120) (1969), 85–100 (Russian). MR 0239052
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 302 (1987), 741-750
- MSC: Primary 42B20; Secondary 30C85
- DOI: https://doi.org/10.1090/S0002-9947-1987-0891644-X
- MathSciNet review: 891644