Character table and blocks of finite simple triality groups $^ 3D_ 4(q)$
HTML articles powered by AMS MathViewer
- by D. I. Deriziotis and G. O. Michler
- Trans. Amer. Math. Soc. 303 (1987), 39-70
- DOI: https://doi.org/10.1090/S0002-9947-1987-0896007-9
- PDF | Request permission
Abstract:
Based on recent work of Spaltenstein [14] and the Deligne-Lusztig theory of irreducible characters of finite groups of Lie type, in this paper the character table of the finite simple groups ${}^3{D_4}(q)$ is given. As an application we obtain a classification of the irreducible characters of ${}^3{D_4}(q)$ into $r$-blocks for all primes $r > 0$. This enables us to verify Brauer’s height zero conjecture, his conjecture on the bound of irreducible characters belonging to a give block, and the Alperin-McKay conjecture for the simple triality groups ${}^3{D_4}(q)$. It also follows that for every prime $r$ there are blocks of defect zero in ${}^3{D_4}(q)$.References
- Armand Borel, Properties and linear representations of Chevalley groups, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 1–55. MR 0258838
- Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
- R. W. Carter, Centralizers of semisimple elements in finite groups of Lie type, Proc. London Math. Soc. (3) 37 (1978), no. 3, 491–507. MR 512022, DOI 10.1112/plms/s3-37.3.491
- D. I. Deriziotis, Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type, Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen [Lecture Notes in Mathematics at the University of Essen], vol. 11, Universität Essen, Fachbereich Mathematik, Essen, 1984. MR 742140
- D. I. Deriziotis, On the number of conjugacy classes in finite groups of Lie type, Comm. Algebra 13 (1985), no. 5, 1019–1045. MR 780636, DOI 10.1080/00927878508823204
- Larry Dornhoff, Group representation theory. Part A: Ordinary representation theory, Pure and Applied Mathematics, vol. 7, Marcel Dekker, Inc., New York, 1971. MR 0347959
- Walter Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 661045
- Paul Fong and Bhama Srinivasan, The blocks of finite general linear and unitary groups, Invent. Math. 69 (1982), no. 1, 109–153. MR 671655, DOI 10.1007/BF01389188
- J. A. Green, G. I. Lehrer, and G. Lusztig, On the degrees of certain group characters, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 105, 1–4. MR 393216, DOI 10.1093/qmath/27.1.1
- James E. Humphreys, Defect groups for finite groups of Lie type, Math. Z. 119 (1971), 149–152. MR 285623, DOI 10.1007/BF01109967
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
- Jørn Børling Olsson, On $2$-blocks with quaternion and quasidihedral defect groups, J. Algebra 36 (1975), no. 2, 212–241. MR 376841, DOI 10.1016/0021-8693(75)90099-X
- William A. Simpson and J. Sutherland Frame, The character tables for $\textrm {SL}(3,\,q)$, $\textrm {SU}(3,\,q^{2})$, $\textrm {PSL}(3,\,q)$, $\textrm {PSU}(3,\,q^{2})$, Canadian J. Math. 25 (1973), 486–494. MR 335618, DOI 10.4153/CJM-1973-049-7
- N. Spaltenstein, Caractères unipotents de $^{3}D_{4}(\textbf {F}_{q})$, Comment. Math. Helv. 57 (1982), no. 4, 676–691 (French). MR 694610, DOI 10.1007/BF02565880
- F. D. Veldkamp, Roots and maximal tori in finite forms of semisimple algebraic groups, Math. Ann. 207 (1974), 301–314. MR 333023, DOI 10.1007/BF01351345
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 303 (1987), 39-70
- MSC: Primary 20C15; Secondary 20C20, 20G40
- DOI: https://doi.org/10.1090/S0002-9947-1987-0896007-9
- MathSciNet review: 896007