Braids and the Jones polynomial
HTML articles powered by AMS MathViewer
- by John Franks and R. F. Williams
- Trans. Amer. Math. Soc. 303 (1987), 97-108
- DOI: https://doi.org/10.1090/S0002-9947-1987-0896009-2
- PDF | Request permission
Abstract:
An important new invariant of knots and links is the Jones polynomial, and the subsequent generalized Jones polynomial or two-variable polynomial. We prove inequalities relating the number of strands and the crossing number of a braid with the exponents of the variables in the generalized Jones polynomial which is associated to the link formed from the braid by connecting the bottom ends to the top ends. We also relate an exponent in the polynomial to the number of components of this link.References
- D. Bennequin, Entrelacement et structures de contact, Thesis, Paris, 1982.
- Joan S. Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. MR 0375281
- Joan S. Birman and R. F. Williams, Knotted periodic orbits in dynamical systems. I. Lorenz’s equations, Topology 22 (1983), no. 1, 47–82. MR 682059, DOI 10.1016/0040-9383(83)90045-9
- P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 2, 239–246. MR 776477, DOI 10.1090/S0273-0979-1985-15361-3
- Vaughan F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103–111. MR 766964, DOI 10.1090/S0273-0979-1985-15304-2
- W. B. R. Lickorish and Kenneth C. Millett, A polynomial invariant of oriented links, Topology 26 (1987), no. 1, 107–141. MR 880512, DOI 10.1016/0040-9383(87)90025-5 H. R. Morton, Closed braid representatives for a link and its Jones-Conway polynomial, preprint, 1985.
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288
- Lee Rudolph, Braided surfaces and Seifert ribbons for closed braids, Comment. Math. Helv. 58 (1983), no. 1, 1–37. MR 699004, DOI 10.1007/BF02564622 J. M. van Buskirk, private communication.
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 303 (1987), 97-108
- MSC: Primary 57M25
- DOI: https://doi.org/10.1090/S0002-9947-1987-0896009-2
- MathSciNet review: 896009