Where does the -norm of a weighted polynomial live?

Authors:
H. N. Mhaskar and E. B. Saff

Journal:
Trans. Amer. Math. Soc. **303** (1987), 109-124

MSC:
Primary 41A65; Secondary 42C10

DOI:
https://doi.org/10.1090/S0002-9947-1987-0896010-9

Erratum:
Trans. Amer. Math. Soc. **308** (1988), 431.

MathSciNet review:
896010

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a general class of nonnegative weight functions having bounded or unbounded support , the authors have previously characterized the smallest compact set , having the property that for every and every polynomial of degree ,

**[1]**S. S. Bonan,*Weighted mean convergence of Largrange interpolation*, Ph.D. Dissertation, Ohio State Univ., Columbus, Ohio, 1982.**[2]**G. Freud,*Orthogonal polynomials*, Pergamon Press, London, 1971.**[3]**Géza Freud,*On polynomial approximation with respect to general weights*, Functional analysis and its applications (Internat. Conf., Eleventh Anniversary of Matscience, Madras, 1973; dedicated to Alladi Ramakrishnan), Springer, Berlin, 1974, pp. 149–179. Lecture Notes in Math., Vol. 399. MR**0404924****[4]**-,*On Markov-Berstein-type inequalities and their applications*, J. Approximation Theory**35**(1982), 203-213.**[5]**A. A. Gonchar and E. A. Rakhmanov,*The equilibrium measure and distribution of zeros of extremal polynomials*, Mat. Sb. (N.S.)**125(167)**(1984), no. 1(9), 117–127 (Russian). MR**760416****[6]**N. S. Landkof,*Foundations of modern potential theory*, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy; Die Grundlehren der mathematischen Wissenschaften, Band 180. MR**0350027****[7]**D. S. Lubinsky,*A weighted polynomial inequality*, Proc. Amer. Math. Soc.**92**(1984), no. 2, 263–267. MR**754716**, https://doi.org/10.1090/S0002-9939-1984-0754716-9**[8]**H. N. Mhaskar,*A rate of convergence theorem for expansions in Freud polynomials*, T. R. #8608, Bowling Green State Univ., 1986.**[9]**H. N. Mhaskar and E. B. Saff,*Extremal problems for polynomials with exponential weights*, Trans. Amer. Math. Soc.**285**(1984), no. 1, 203–234. MR**748838**, https://doi.org/10.1090/S0002-9947-1984-0748838-0**[10]**-,*Polynomials with Laguerre weights in*, Lecture Notes in Math., vol. 1105, Springer-Verlag, Berlin and New York, 1984, pp. 511-523.**[11]**H. N. Mhaskar and E. B. Saff,*Where does the sup norm of a weighted polynomial live? (A generalization of incomplete polynomials)*, Constr. Approx.**1**(1985), no. 1, 71–91. MR**766096**, https://doi.org/10.1007/BF01890023**[12]**-,*A Weierstrass-type theorem for certain weighted polynomials*, Proc. Internat. Conf. on Approximation Theory, St. Johns, N.F., Canada, 1984 (to appear).**[13]**Paul G. Nevai,*Orthogonal polynomials*, Mem. Amer. Math. Soc.**18**(1979), no. 213, v+185. MR**519926**, https://doi.org/10.1090/memo/0213**[14]**M. Tsuji,*Potential theory in modern function theory*, Maruzen Co., Ltd., Tokyo, 1959. MR**0114894****[15]**R. A. Zalik,*Some weighted polynomial inequalities*, J. Approx. Theory**41**(1984), no. 1, 39–50. MR**742234**, https://doi.org/10.1016/0021-9045(84)90118-7**[16]**A. Zygmund,*Trigonometric series*, Cambridge Univ. Press, Cambridge, 1977.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
41A65,
42C10

Retrieve articles in all journals with MSC: 41A65, 42C10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1987-0896010-9

Keywords:
Weighted polynomials,
orthogonal polynomials,
extremal polynomials,
Nikolskii-type inequalities,
potential theory

Article copyright:
© Copyright 1987
American Mathematical Society