Where does the $L^ p$-norm of a weighted polynomial live?
HTML articles powered by AMS MathViewer
- by H. N. Mhaskar and E. B. Saff
- Trans. Amer. Math. Soc. 303 (1987), 109-124
- DOI: https://doi.org/10.1090/S0002-9947-1987-0896010-9
- PDF | Request permission
Erratum: Trans. Amer. Math. Soc. 308 (1988), 431.
Abstract:
For a general class of nonnegative weight functions $w(x)$ having bounded or unbounded support $\Sigma \subset {\mathbf {R}}$, the authors have previously characterized the smallest compact set ${\mathfrak {S}_w}$, having the property that for every $n = 1, 2, \ldots$ and every polynomial $P$ of degree $\leqslant n$, \[ ||{[w(x)]^n}P(x)|{|_{{L^\infty }(\Sigma )}} = ||{[w(x)]^n}P(x)|{|_{{L^\infty }({\mathfrak {S}_w})}}\] . In the present paper we prove that, under mild conditions on $w$, the ${L^p}$-norms $(0 < p < \infty )$ of such weighted polynomials also "live" on ${\mathfrak {S}_w}$ in the sense that for each $\eta > 0$ there exist a compact set $\Delta$ with Lebesgue measure $m(\Delta ) < \eta$ and positive constants ${c_1}$, ${c_2}$ such that \[ ||{w^n}P|{|_{{L^p}(\Sigma )}} \leqslant (1 + {c_1}\exp ( - {c_2}n))||{w^n}P|{|_{{L^p}({\mathfrak {S}_w} \cup \Delta )}}\] . As applications we deduce asymptotic properties of certain extremal polynomials that include polynomials orthogonal with respect to a fixed weight over an unbounded interval. Our proofs utilize potential theoretic arguments along with Nikolskii-type inequalities.References
- S. S. Bonan, Weighted mean convergence of Largrange interpolation, Ph.D. Dissertation, Ohio State Univ., Columbus, Ohio, 1982.
G. Freud, Orthogonal polynomials, Pergamon Press, London, 1971.
- Géza Freud, On polynomial approximation with respect to general weights, Functional analysis and its applications (Internat. Conf., Eleventh Anniversary of Matscience, Madras, 1973; dedicated to Alladi Ramakrishnan), Lecture Notes in Math., Vol. 399, Springer, Berlin, 1974, pp. 149–179. MR 0404924 —, On Markov-Berstein-type inequalities and their applications, J. Approximation Theory 35 (1982), 203-213.
- A. A. Gonchar and E. A. Rakhmanov, The equilibrium measure and distribution of zeros of extremal polynomials, Mat. Sb. (N.S.) 125(167) (1984), no. 1(9), 117–127 (Russian). MR 760416
- N. S. Landkof, Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy. MR 0350027, DOI 10.1007/978-3-642-65183-0
- D. S. Lubinsky, A weighted polynomial inequality, Proc. Amer. Math. Soc. 92 (1984), no. 2, 263–267. MR 754716, DOI 10.1090/S0002-9939-1984-0754716-9 H. N. Mhaskar, A rate of convergence theorem for expansions in Freud polynomials, T. R. #8608, Bowling Green State Univ., 1986.
- H. N. Mhaskar and E. B. Saff, Extremal problems for polynomials with exponential weights, Trans. Amer. Math. Soc. 285 (1984), no. 1, 203–234. MR 748838, DOI 10.1090/S0002-9947-1984-0748838-0 —, Polynomials with Laguerre weights in ${L^p}$, Lecture Notes in Math., vol. 1105, Springer-Verlag, Berlin and New York, 1984, pp. 511-523.
- H. N. Mhaskar and E. B. Saff, Where does the sup norm of a weighted polynomial live? (A generalization of incomplete polynomials), Constr. Approx. 1 (1985), no. 1, 71–91. MR 766096, DOI 10.1007/BF01890023 —, A Weierstrass-type theorem for certain weighted polynomials, Proc. Internat. Conf. on Approximation Theory, St. Johns, N.F., Canada, 1984 (to appear).
- Paul G. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 18 (1979), no. 213, v+185. MR 519926, DOI 10.1090/memo/0213
- M. Tsuji, Potential theory in modern function theory, Maruzen Co. Ltd., Tokyo, 1959. MR 0114894
- R. A. Zalik, Some weighted polynomial inequalities, J. Approx. Theory 41 (1984), no. 1, 39–50. MR 742234, DOI 10.1016/0021-9045(84)90118-7 A. Zygmund, Trigonometric series, Cambridge Univ. Press, Cambridge, 1977.
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 303 (1987), 109-124
- MSC: Primary 41A65; Secondary 42C10
- DOI: https://doi.org/10.1090/S0002-9947-1987-0896010-9
- MathSciNet review: 896010